语义Web的数据分区

Trupti Padiya, Mohit Ahir, Minal Bhise, S. Chaudhary
{"title":"语义Web的数据分区","authors":"Trupti Padiya, Mohit Ahir, Minal Bhise, S. Chaudhary","doi":"10.47893/ijcct.2014.1247","DOIUrl":null,"url":null,"abstract":"Semantic web database is an RDF database. Tremendous increase can be seen in semantic web data, as real life applications of semantic web are using this data. Efficient management of this data at a larger scale, and efficient query performance are the two major concerns. This work aims at analyzing query performance issues in terms of execution time and scalability using data partitioning techniques. An experiment is devised to show effect of data partitioning technique on query performance. It demonstrates the query performance analysis for partitioning techniques applied. Vertical partitioning, hybrid partitioning and property table was used to store the RDF data and query execution time is analyzed. The experiment was carried out on a very small dummy data and now it will be scaled up using Barton library catalogue.","PeriodicalId":220394,"journal":{"name":"International Journal of Computer and Communication Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Partitioning for Semantic Web\",\"authors\":\"Trupti Padiya, Mohit Ahir, Minal Bhise, S. Chaudhary\",\"doi\":\"10.47893/ijcct.2014.1247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic web database is an RDF database. Tremendous increase can be seen in semantic web data, as real life applications of semantic web are using this data. Efficient management of this data at a larger scale, and efficient query performance are the two major concerns. This work aims at analyzing query performance issues in terms of execution time and scalability using data partitioning techniques. An experiment is devised to show effect of data partitioning technique on query performance. It demonstrates the query performance analysis for partitioning techniques applied. Vertical partitioning, hybrid partitioning and property table was used to store the RDF data and query execution time is analyzed. The experiment was carried out on a very small dummy data and now it will be scaled up using Barton library catalogue.\",\"PeriodicalId\":220394,\"journal\":{\"name\":\"International Journal of Computer and Communication Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47893/ijcct.2014.1247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47893/ijcct.2014.1247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

语义web数据库是一种RDF数据库。由于语义网的实际应用正在使用这些数据,因此可以看到语义网数据的巨大增长。在更大范围内对这些数据进行有效的管理和高效的查询性能是两个主要问题。这项工作旨在使用数据分区技术从执行时间和可伸缩性方面分析查询性能问题。设计了一个实验来展示数据分区技术对查询性能的影响。它演示了应用分区技术的查询性能分析。采用垂直分区、混合分区和属性表来存储RDF数据,并对查询的执行时间进行了分析。这个实验是在一个非常小的虚拟数据上进行的,现在它将使用巴顿图书馆的目录来扩大规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Partitioning for Semantic Web
Semantic web database is an RDF database. Tremendous increase can be seen in semantic web data, as real life applications of semantic web are using this data. Efficient management of this data at a larger scale, and efficient query performance are the two major concerns. This work aims at analyzing query performance issues in terms of execution time and scalability using data partitioning techniques. An experiment is devised to show effect of data partitioning technique on query performance. It demonstrates the query performance analysis for partitioning techniques applied. Vertical partitioning, hybrid partitioning and property table was used to store the RDF data and query execution time is analyzed. The experiment was carried out on a very small dummy data and now it will be scaled up using Barton library catalogue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信