预测亨廷顿舞蹈症的暴力缺失数据极端学习机

Anton Akusok, Emil Eirola, Kaj-Mikael Björk, Y. Miché, H. Johnson, A. Lendasse
{"title":"预测亨廷顿舞蹈症的暴力缺失数据极端学习机","authors":"Anton Akusok, Emil Eirola, Kaj-Mikael Björk, Y. Miché, H. Johnson, A. Lendasse","doi":"10.1145/3056540.3064945","DOIUrl":null,"url":null,"abstract":"This paper presents a novel procedure to train Extreme Learning Machine models on datasets with missing values. In effect, a separate model is learned to classify every sample in the test set, however, this is accomplished in an efficient manner which does not require accessing the training data repeatedly. Instead, a sparse structure is imposed on the input layer weights, which enables calculating the necessary statistics in the training phase. An application to predicting the progression of Huntington's disease from brain scans is presented. Experimental comparisons show promising results equivalent to the state of the art in machine learning with incomplete data.","PeriodicalId":140232,"journal":{"name":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease\",\"authors\":\"Anton Akusok, Emil Eirola, Kaj-Mikael Björk, Y. Miché, H. Johnson, A. Lendasse\",\"doi\":\"10.1145/3056540.3064945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel procedure to train Extreme Learning Machine models on datasets with missing values. In effect, a separate model is learned to classify every sample in the test set, however, this is accomplished in an efficient manner which does not require accessing the training data repeatedly. Instead, a sparse structure is imposed on the input layer weights, which enables calculating the necessary statistics in the training phase. An application to predicting the progression of Huntington's disease from brain scans is presented. Experimental comparisons show promising results equivalent to the state of the art in machine learning with incomplete data.\",\"PeriodicalId\":140232,\"journal\":{\"name\":\"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3056540.3064945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3056540.3064945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种基于缺失值数据集训练极限学习机模型的新方法。实际上,学习一个单独的模型来对测试集中的每个样本进行分类,然而,这是以一种不需要重复访问训练数据的有效方式完成的。相反,在输入层权重上施加了一个稀疏结构,这使得在训练阶段可以计算必要的统计数据。介绍了一种通过脑部扫描来预测亨廷顿氏病进展的应用。实验比较显示出有希望的结果,相当于不完整数据下机器学习的最新水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brute-force Missing Data Extreme Learning Machine for Predicting Huntington's Disease
This paper presents a novel procedure to train Extreme Learning Machine models on datasets with missing values. In effect, a separate model is learned to classify every sample in the test set, however, this is accomplished in an efficient manner which does not require accessing the training data repeatedly. Instead, a sparse structure is imposed on the input layer weights, which enables calculating the necessary statistics in the training phase. An application to predicting the progression of Huntington's disease from brain scans is presented. Experimental comparisons show promising results equivalent to the state of the art in machine learning with incomplete data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信