高光谱图像分类的深度迁移学习

Jianzhe Lin, R. Ward, Z. J. Wang
{"title":"高光谱图像分类的深度迁移学习","authors":"Jianzhe Lin, R. Ward, Z. J. Wang","doi":"10.1109/MMSP.2018.8547139","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) includes a vast quantities of samples, large number of bands, as well as randomly occurring redundancy. Classifying such complex data is challenging, and the classification performance generally is affected significantly by the amount of labeled training samples. Collecting such labeled training samples is labor and time consuming, motivating the idea of borrowing and reusing labeled samples from other preexisting related images. Therefore transfer learning, which can mitigate the semantic gap between existing and new HSI, has recently drawn increasing research attention. However, existing transfer learning methods for HSI which concentrated on how to overcome the divergence among images, may neglect the high level latent features during the transfer learning process. In this paper, we present two novel ideas based on this observation. We propose constructing and connecting higher level features for the source and target HSI data, to further overcome the cross-domain disparity. Different from existing methods, no priori knowledge on the target domain is needed for the proposed classification framework, and the proposed framework works for both homogeneous and heterogenous HSI data. Experimental results on real world hyperspectral images indicate the significance of the proposed method in HSI classification.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Deep Transfer Learning for Hyperspectral Image Classification\",\"authors\":\"Jianzhe Lin, R. Ward, Z. J. Wang\",\"doi\":\"10.1109/MMSP.2018.8547139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral image (HSI) includes a vast quantities of samples, large number of bands, as well as randomly occurring redundancy. Classifying such complex data is challenging, and the classification performance generally is affected significantly by the amount of labeled training samples. Collecting such labeled training samples is labor and time consuming, motivating the idea of borrowing and reusing labeled samples from other preexisting related images. Therefore transfer learning, which can mitigate the semantic gap between existing and new HSI, has recently drawn increasing research attention. However, existing transfer learning methods for HSI which concentrated on how to overcome the divergence among images, may neglect the high level latent features during the transfer learning process. In this paper, we present two novel ideas based on this observation. We propose constructing and connecting higher level features for the source and target HSI data, to further overcome the cross-domain disparity. Different from existing methods, no priori knowledge on the target domain is needed for the proposed classification framework, and the proposed framework works for both homogeneous and heterogenous HSI data. Experimental results on real world hyperspectral images indicate the significance of the proposed method in HSI classification.\",\"PeriodicalId\":137522,\"journal\":{\"name\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2018.8547139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

高光谱图像包含大量的样本,大量的波段,以及随机发生的冗余。对如此复杂的数据进行分类是具有挑战性的,并且分类性能通常会受到标记训练样本数量的显著影响。收集这样的标记训练样本是劳动和耗时的,激发了从其他先前存在的相关图像中借用和重用标记样本的想法。因此,迁移学习可以缓解现有和新的HSI之间的语义差距,最近引起了越来越多的研究关注。然而,现有的HSI迁移学习方法侧重于如何克服图像之间的差异,在迁移学习过程中可能忽略了高水平的潜在特征。在本文中,我们基于这一观察提出了两个新的想法。我们提出构建和连接源和目标恒生指数数据的更高层次特征,以进一步克服跨域差异。与现有方法不同的是,本文提出的分类框架不需要目标领域的先验知识,并且该框架既适用于同质HSI数据,也适用于异构HSI数据。在真实高光谱图像上的实验结果表明了该方法在HSI分类中的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Transfer Learning for Hyperspectral Image Classification
Hyperspectral image (HSI) includes a vast quantities of samples, large number of bands, as well as randomly occurring redundancy. Classifying such complex data is challenging, and the classification performance generally is affected significantly by the amount of labeled training samples. Collecting such labeled training samples is labor and time consuming, motivating the idea of borrowing and reusing labeled samples from other preexisting related images. Therefore transfer learning, which can mitigate the semantic gap between existing and new HSI, has recently drawn increasing research attention. However, existing transfer learning methods for HSI which concentrated on how to overcome the divergence among images, may neglect the high level latent features during the transfer learning process. In this paper, we present two novel ideas based on this observation. We propose constructing and connecting higher level features for the source and target HSI data, to further overcome the cross-domain disparity. Different from existing methods, no priori knowledge on the target domain is needed for the proposed classification framework, and the proposed framework works for both homogeneous and heterogenous HSI data. Experimental results on real world hyperspectral images indicate the significance of the proposed method in HSI classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信