会话系统中基于上下文的多模态输入理解

J. Chai, Shimei Pan, Michelle X. Zhou, K. Houck
{"title":"会话系统中基于上下文的多模态输入理解","authors":"J. Chai, Shimei Pan, Michelle X. Zhou, K. Houck","doi":"10.1109/ICMI.2002.1166974","DOIUrl":null,"url":null,"abstract":"In a multimodal human-machine conversation, user inputs are often abbreviated or imprecise. Sometimes, merely fusing multimodal inputs together cannot derive a complete understanding. To address these inadequacies, we are building a semantics-based multimodal interpretation framework called MIND (Multimodal Interpretation for Natural Dialog). The unique feature of MIND is the use of a variety of contexts (e.g., domain context and conversation context) to enhance multimodal fusion. In this paper we present a semantically rich modeling scheme and a context-based approach that enable MIND to gain a full understanding of user inputs, including ambiguous and incomplete ones.","PeriodicalId":208377,"journal":{"name":"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Context-based multimodal input understanding in conversational systems\",\"authors\":\"J. Chai, Shimei Pan, Michelle X. Zhou, K. Houck\",\"doi\":\"10.1109/ICMI.2002.1166974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a multimodal human-machine conversation, user inputs are often abbreviated or imprecise. Sometimes, merely fusing multimodal inputs together cannot derive a complete understanding. To address these inadequacies, we are building a semantics-based multimodal interpretation framework called MIND (Multimodal Interpretation for Natural Dialog). The unique feature of MIND is the use of a variety of contexts (e.g., domain context and conversation context) to enhance multimodal fusion. In this paper we present a semantically rich modeling scheme and a context-based approach that enable MIND to gain a full understanding of user inputs, including ambiguous and incomplete ones.\",\"PeriodicalId\":208377,\"journal\":{\"name\":\"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMI.2002.1166974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMI.2002.1166974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在多模式人机对话中,用户输入通常是缩写或不精确的。有时,仅仅将多模态输入融合在一起并不能得到一个完整的理解。为了解决这些不足,我们正在构建一个基于语义的多模态解释框架,称为MIND(自然对话的多模态解释)。MIND的独特之处在于使用多种上下文(如领域上下文和会话上下文)来增强多模态融合。在本文中,我们提出了一个语义丰富的建模方案和基于上下文的方法,使MIND能够充分理解用户输入,包括模糊和不完整的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-based multimodal input understanding in conversational systems
In a multimodal human-machine conversation, user inputs are often abbreviated or imprecise. Sometimes, merely fusing multimodal inputs together cannot derive a complete understanding. To address these inadequacies, we are building a semantics-based multimodal interpretation framework called MIND (Multimodal Interpretation for Natural Dialog). The unique feature of MIND is the use of a variety of contexts (e.g., domain context and conversation context) to enhance multimodal fusion. In this paper we present a semantically rich modeling scheme and a context-based approach that enable MIND to gain a full understanding of user inputs, including ambiguous and incomplete ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信