时变极限序书网络的高维统计学习技术

Shi Chen, W. Härdle, M. Schienle
{"title":"时变极限序书网络的高维统计学习技术","authors":"Shi Chen, W. Härdle, M. Schienle","doi":"10.2139/ssrn.3702349","DOIUrl":null,"url":null,"abstract":"This paper provides statistical learning techniques for determining the full own-price market impact and the relevance and effect of cross-price and cross-asset spillover channels from intraday transactions data. The novel tools allow extracting comprehensive information contained in the limit order books (LOB) and quantify their impacts on the size and structure of price interdependencies across stocks. For correct empirical network determination of such dynamic liquidity price effects even in small portfolios, we require high-dimensional statistical learning methods with an integrated general bootstrap procedure. We document the importance of LOB liquidity network spillovers even for a small blue-chip NASDAQ portfolio.","PeriodicalId":130177,"journal":{"name":"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-dimensional Statistical Learning Techniques for Time-varying Limit Order Book Networks\",\"authors\":\"Shi Chen, W. Härdle, M. Schienle\",\"doi\":\"10.2139/ssrn.3702349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides statistical learning techniques for determining the full own-price market impact and the relevance and effect of cross-price and cross-asset spillover channels from intraday transactions data. The novel tools allow extracting comprehensive information contained in the limit order books (LOB) and quantify their impacts on the size and structure of price interdependencies across stocks. For correct empirical network determination of such dynamic liquidity price effects even in small portfolios, we require high-dimensional statistical learning methods with an integrated general bootstrap procedure. We document the importance of LOB liquidity network spillovers even for a small blue-chip NASDAQ portfolio.\",\"PeriodicalId\":130177,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3702349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Capital Markets - Asset Pricing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3702349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提供了统计学习技术,用于从日内交易数据中确定完全的自有价格市场影响以及跨价格和跨资产溢出渠道的相关性和效应。新工具允许提取包含在限价订单(LOB)中的综合信息,并量化它们对股票价格相互依赖的大小和结构的影响。即使在小型投资组合中,为了正确地确定这种动态流动性价格效应的经验网络,我们需要高维统计学习方法与集成的一般自举过程。我们证明了LOB流动性网络溢出效应的重要性,即使对于纳斯达克的小型蓝筹股投资组合也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-dimensional Statistical Learning Techniques for Time-varying Limit Order Book Networks
This paper provides statistical learning techniques for determining the full own-price market impact and the relevance and effect of cross-price and cross-asset spillover channels from intraday transactions data. The novel tools allow extracting comprehensive information contained in the limit order books (LOB) and quantify their impacts on the size and structure of price interdependencies across stocks. For correct empirical network determination of such dynamic liquidity price effects even in small portfolios, we require high-dimensional statistical learning methods with an integrated general bootstrap procedure. We document the importance of LOB liquidity network spillovers even for a small blue-chip NASDAQ portfolio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信