大型图中负链接预测的分散方法

F. Abbasi, M. Muzammal, Qiang Qu
{"title":"大型图中负链接预测的分散方法","authors":"F. Abbasi, M. Muzammal, Qiang Qu","doi":"10.1109/ICDMW.2018.00027","DOIUrl":null,"url":null,"abstract":"Social network analytics is an important research area and attracts a lot of attention from researchers. Extraction of meaningful information from linked structures such as graph is known as link analysis. The emergence of signed social networks gives interesting insights into the social networks as the signed networks have the ability to represent various real-world relationships with positive (friend) and negative (foe) links. One interesting issue in signed networks is edge sign prediction among the members of the network. Negative link prediction is challenging due to the limited availability of the training data and also due to extracting a graph embedding that represents the negative links in a sparse graph. This study is focused on the prediction of the negative links across the signed network using a decentralized approach. For learning latent factors across the network, we use probabilistic matrix factorization. A detailed experimental study is performed to evaluate the accuracy of the proposed model. The results show that negative link prediction using matrix factorization is a promising approach and negative links can be predicted with high accuracy.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Decentralized Approach for Negative Link Prediction in Large Graphs\",\"authors\":\"F. Abbasi, M. Muzammal, Qiang Qu\",\"doi\":\"10.1109/ICDMW.2018.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social network analytics is an important research area and attracts a lot of attention from researchers. Extraction of meaningful information from linked structures such as graph is known as link analysis. The emergence of signed social networks gives interesting insights into the social networks as the signed networks have the ability to represent various real-world relationships with positive (friend) and negative (foe) links. One interesting issue in signed networks is edge sign prediction among the members of the network. Negative link prediction is challenging due to the limited availability of the training data and also due to extracting a graph embedding that represents the negative links in a sparse graph. This study is focused on the prediction of the negative links across the signed network using a decentralized approach. For learning latent factors across the network, we use probabilistic matrix factorization. A detailed experimental study is performed to evaluate the accuracy of the proposed model. The results show that negative link prediction using matrix factorization is a promising approach and negative links can be predicted with high accuracy.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

社会网络分析是一个重要的研究领域,受到研究者的广泛关注。从链接结构(如图)中提取有意义的信息称为链接分析。签名社交网络的出现为社交网络提供了有趣的见解,因为签名网络有能力代表各种现实世界的关系,包括积极(朋友)和消极(敌人)联系。签名网络中一个有趣的问题是网络成员之间的边符号预测。由于训练数据的可用性有限,并且由于在稀疏图中提取表示负链接的图嵌入,负链接预测具有挑战性。本研究的重点是使用分散的方法预测签名网络中的负链接。为了学习整个网络的潜在因素,我们使用概率矩阵分解。进行了详细的实验研究,以评估所提出的模型的准确性。结果表明,利用矩阵分解法进行负链预测是一种很有前途的方法,负链预测精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Decentralized Approach for Negative Link Prediction in Large Graphs
Social network analytics is an important research area and attracts a lot of attention from researchers. Extraction of meaningful information from linked structures such as graph is known as link analysis. The emergence of signed social networks gives interesting insights into the social networks as the signed networks have the ability to represent various real-world relationships with positive (friend) and negative (foe) links. One interesting issue in signed networks is edge sign prediction among the members of the network. Negative link prediction is challenging due to the limited availability of the training data and also due to extracting a graph embedding that represents the negative links in a sparse graph. This study is focused on the prediction of the negative links across the signed network using a decentralized approach. For learning latent factors across the network, we use probabilistic matrix factorization. A detailed experimental study is performed to evaluate the accuracy of the proposed model. The results show that negative link prediction using matrix factorization is a promising approach and negative links can be predicted with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信