带有异常值数据的鲁棒联合稀疏恢复

Ozgur Balkan, K. Kreutz-Delgado, S. Makeig
{"title":"带有异常值数据的鲁棒联合稀疏恢复","authors":"Ozgur Balkan, K. Kreutz-Delgado, S. Makeig","doi":"10.1109/ICASSP.2013.6638373","DOIUrl":null,"url":null,"abstract":"We propose a method to solve the multiple measurement vector (MMV) sparse signal recovery problem in a robust manner when data contains outlier points which do not fit the shared sparsity structure otherwise contained in the data. This scenario occurs frequently in the applications of MMV models due to only partially known source dynamics. The algorithm we propose is a modification of MMV-based sparse bayesian learning (M-SBL) by incorporating the idea of least trimmed squares (LTS), which has previously been developed for robust linear regression. Experiments show a significant performance improvement over the conventional M-SBL under different outlier ratios and amplitudes.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust joint sparse recovery on data with outliers\",\"authors\":\"Ozgur Balkan, K. Kreutz-Delgado, S. Makeig\",\"doi\":\"10.1109/ICASSP.2013.6638373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method to solve the multiple measurement vector (MMV) sparse signal recovery problem in a robust manner when data contains outlier points which do not fit the shared sparsity structure otherwise contained in the data. This scenario occurs frequently in the applications of MMV models due to only partially known source dynamics. The algorithm we propose is a modification of MMV-based sparse bayesian learning (M-SBL) by incorporating the idea of least trimmed squares (LTS), which has previously been developed for robust linear regression. Experiments show a significant performance improvement over the conventional M-SBL under different outlier ratios and amplitudes.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种鲁棒的方法来解决多测量向量(MMV)稀疏信号恢复问题,当数据中包含不符合共享稀疏结构的离群点时。这种情况在MMV模型的应用中经常发生,因为只有部分已知的源动力学。我们提出的算法是基于mmv的稀疏贝叶斯学习(M-SBL)的改进,通过结合最小裁剪二乘(LTS)的思想,该思想先前已被开发用于鲁棒线性回归。实验表明,在不同的离群值比和幅值下,该算法的性能比传统的M-SBL有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust joint sparse recovery on data with outliers
We propose a method to solve the multiple measurement vector (MMV) sparse signal recovery problem in a robust manner when data contains outlier points which do not fit the shared sparsity structure otherwise contained in the data. This scenario occurs frequently in the applications of MMV models due to only partially known source dynamics. The algorithm we propose is a modification of MMV-based sparse bayesian learning (M-SBL) by incorporating the idea of least trimmed squares (LTS), which has previously been developed for robust linear regression. Experiments show a significant performance improvement over the conventional M-SBL under different outlier ratios and amplitudes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信