Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, M. Samidi
{"title":"调度数据密集型工作流到存储受限的分布式资源","authors":"Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, M. Samidi","doi":"10.1109/CCGRID.2007.101","DOIUrl":null,"url":null,"abstract":"In this paper we examine the issue of optimizing disk usage and of scheduling large-scale scientific workflows onto distributed resources where the workflows are data- intensive, requiring large amounts of data storage, and where the resources have limited storage resources. Our approach is two-fold: we minimize the amount of space a workflow requires during execution by removing data files at runtime when they are no longer required and we schedule the workflows in a way that assures that the amount of data required and generated by the workflow fits onto the individual resources. For a workflow used by gravitational- wave physicists, we were able to improve the amount of storage required by the workflow by up to 57 %. We also designed an algorithm that can not only find feasible solutions for workflow task assignment to resources in disk- space constrained environments, but can also improve the overall workflow performance.","PeriodicalId":278535,"journal":{"name":"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)","volume":"438 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"153","resultStr":"{\"title\":\"Scheduling Data-IntensiveWorkflows onto Storage-Constrained Distributed Resources\",\"authors\":\"Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers, M. Samidi\",\"doi\":\"10.1109/CCGRID.2007.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we examine the issue of optimizing disk usage and of scheduling large-scale scientific workflows onto distributed resources where the workflows are data- intensive, requiring large amounts of data storage, and where the resources have limited storage resources. Our approach is two-fold: we minimize the amount of space a workflow requires during execution by removing data files at runtime when they are no longer required and we schedule the workflows in a way that assures that the amount of data required and generated by the workflow fits onto the individual resources. For a workflow used by gravitational- wave physicists, we were able to improve the amount of storage required by the workflow by up to 57 %. We also designed an algorithm that can not only find feasible solutions for workflow task assignment to resources in disk- space constrained environments, but can also improve the overall workflow performance.\",\"PeriodicalId\":278535,\"journal\":{\"name\":\"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)\",\"volume\":\"438 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"153\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCGRID.2007.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2007.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we examine the issue of optimizing disk usage and of scheduling large-scale scientific workflows onto distributed resources where the workflows are data- intensive, requiring large amounts of data storage, and where the resources have limited storage resources. Our approach is two-fold: we minimize the amount of space a workflow requires during execution by removing data files at runtime when they are no longer required and we schedule the workflows in a way that assures that the amount of data required and generated by the workflow fits onto the individual resources. For a workflow used by gravitational- wave physicists, we were able to improve the amount of storage required by the workflow by up to 57 %. We also designed an algorithm that can not only find feasible solutions for workflow task assignment to resources in disk- space constrained environments, but can also improve the overall workflow performance.