超立方体上求解高KdV方程的并行算法

T. Taha
{"title":"超立方体上求解高KdV方程的并行算法","authors":"T. Taha","doi":"10.1109/DMCC.1990.555435","DOIUrl":null,"url":null,"abstract":"Taha and Ablowitz derived numerkal schemes by methods related to the inverse scattering bransform (IST) for phy;ically important equations such as the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (MKdV) equations. Experiments have shown that the IST numerical schemes compare very favorably with other numerical methods. In this paper an accurate numerical scheme based on the IST is used to solve non-integrable higher KdV equations, for instance:","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Parallel Algorithm for Solving Higher KdV Equations on a Hypercube\",\"authors\":\"T. Taha\",\"doi\":\"10.1109/DMCC.1990.555435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taha and Ablowitz derived numerkal schemes by methods related to the inverse scattering bransform (IST) for phy;ically important equations such as the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (MKdV) equations. Experiments have shown that the IST numerical schemes compare very favorably with other numerical methods. In this paper an accurate numerical scheme based on the IST is used to solve non-integrable higher KdV equations, for instance:\",\"PeriodicalId\":204431,\"journal\":{\"name\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1990.555435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.555435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Taha和Ablowitz通过与逆散射变换(IST)相关的方法推导出物理上重要的方程(如Korteweg-de Vries (KdV)和修正Korteweg-de Vries (MKdV)方程)的数值格式。实验表明,IST数值格式与其他数值方法相比具有较好的优越性。本文采用基于IST的精确数值格式求解不可积高KdV方程,例如:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Parallel Algorithm for Solving Higher KdV Equations on a Hypercube
Taha and Ablowitz derived numerkal schemes by methods related to the inverse scattering bransform (IST) for phy;ically important equations such as the Korteweg-de Vries (KdV) and modified Korteweg-de Vries (MKdV) equations. Experiments have shown that the IST numerical schemes compare very favorably with other numerical methods. In this paper an accurate numerical scheme based on the IST is used to solve non-integrable higher KdV equations, for instance:
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信