{"title":"电动汽车分散充电改进AIMD算法的联合仿真","authors":"Samy Faddel, M. E. Hariri, O. Mohammed","doi":"10.1109/EEEIC.2019.8783621","DOIUrl":null,"url":null,"abstract":"Mass adoption of Electric Vehicles (EVs) will bring some challenges to the operators of electric utilities. This paper proposes a decentralized control algorithm to manage the charging of distributed EVs. The proposed algorithm is inspired by the Additive Increase - Multiplicative Decrease (AIMD) algorithm, which is commonly used for the management of communication network congestions. The improved algorithm takes into consideration the preferences of the owners of the EVs. Also, it eliminates the overloading and the under-voltage problems that might be associated with the charging of EVs. The proposed algorithm is validated using a co-simulation platform, where the power components are simulated using MATLAB/Simulink and is linked to embedded microcontrollers over a real-time communication network via the Data Distribution System (DDS) middleware.","PeriodicalId":422977,"journal":{"name":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Simulation of Improved AIMD Algorithm for Decentralized Charging of Electric Vehicles\",\"authors\":\"Samy Faddel, M. E. Hariri, O. Mohammed\",\"doi\":\"10.1109/EEEIC.2019.8783621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass adoption of Electric Vehicles (EVs) will bring some challenges to the operators of electric utilities. This paper proposes a decentralized control algorithm to manage the charging of distributed EVs. The proposed algorithm is inspired by the Additive Increase - Multiplicative Decrease (AIMD) algorithm, which is commonly used for the management of communication network congestions. The improved algorithm takes into consideration the preferences of the owners of the EVs. Also, it eliminates the overloading and the under-voltage problems that might be associated with the charging of EVs. The proposed algorithm is validated using a co-simulation platform, where the power components are simulated using MATLAB/Simulink and is linked to embedded microcontrollers over a real-time communication network via the Data Distribution System (DDS) middleware.\",\"PeriodicalId\":422977,\"journal\":{\"name\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2019.8783621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2019.8783621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-Simulation of Improved AIMD Algorithm for Decentralized Charging of Electric Vehicles
Mass adoption of Electric Vehicles (EVs) will bring some challenges to the operators of electric utilities. This paper proposes a decentralized control algorithm to manage the charging of distributed EVs. The proposed algorithm is inspired by the Additive Increase - Multiplicative Decrease (AIMD) algorithm, which is commonly used for the management of communication network congestions. The improved algorithm takes into consideration the preferences of the owners of the EVs. Also, it eliminates the overloading and the under-voltage problems that might be associated with the charging of EVs. The proposed algorithm is validated using a co-simulation platform, where the power components are simulated using MATLAB/Simulink and is linked to embedded microcontrollers over a real-time communication network via the Data Distribution System (DDS) middleware.