美国野火的预测模型

Lang Qin, W. Shao, Guofei Du, Junlin Mou, R. Bi
{"title":"美国野火的预测模型","authors":"Lang Qin, W. Shao, Guofei Du, Junlin Mou, R. Bi","doi":"10.1109/CDS52072.2021.00102","DOIUrl":null,"url":null,"abstract":"This research utilizes wildfire records between 1911 and 2015 to train various models to predict fire size through using temperature, wind, humidity, and precipitation as features. Our results show 1) Decision Tree based Classifier outperforms both linear and ridge regression 2) Government entities can leverage our methodology to manage wildfires more efficiently, effectively, and decreasing monetary damages.","PeriodicalId":380426,"journal":{"name":"2021 2nd International Conference on Computing and Data Science (CDS)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive Modeling of Wildfires in the United States\",\"authors\":\"Lang Qin, W. Shao, Guofei Du, Junlin Mou, R. Bi\",\"doi\":\"10.1109/CDS52072.2021.00102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research utilizes wildfire records between 1911 and 2015 to train various models to predict fire size through using temperature, wind, humidity, and precipitation as features. Our results show 1) Decision Tree based Classifier outperforms both linear and ridge regression 2) Government entities can leverage our methodology to manage wildfires more efficiently, effectively, and decreasing monetary damages.\",\"PeriodicalId\":380426,\"journal\":{\"name\":\"2021 2nd International Conference on Computing and Data Science (CDS)\",\"volume\":\"186 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Computing and Data Science (CDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDS52072.2021.00102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Computing and Data Science (CDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDS52072.2021.00102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用1911年至2015年的野火记录,以温度、风、湿度和降水为特征,训练各种模型来预测火灾规模。我们的研究结果表明:1)基于决策树的分类器优于线性回归和山脊回归;2)政府实体可以利用我们的方法更有效地管理野火,并减少经济损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Modeling of Wildfires in the United States
This research utilizes wildfire records between 1911 and 2015 to train various models to predict fire size through using temperature, wind, humidity, and precipitation as features. Our results show 1) Decision Tree based Classifier outperforms both linear and ridge regression 2) Government entities can leverage our methodology to manage wildfires more efficiently, effectively, and decreasing monetary damages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信