MultiAspectForensics:使用张量挖掘大型异构网络

Koji Maruhashi, Fan Guo, C. Faloutsos
{"title":"MultiAspectForensics:使用张量挖掘大型异构网络","authors":"Koji Maruhashi, Fan Guo, C. Faloutsos","doi":"10.1504/IJWET.2012.050958","DOIUrl":null,"url":null,"abstract":"Modern applications such as web knowledge bases, network traffic monitoring and online social networks involve an unprecedented amount of 'heterogeneous' network data, with rich types of interactions among nodes. How can we find patterns and anomalies for heterogeneous networks with millions of edges that have high dimensional attributes, in a scalable way? We introduce MultiAspectForensics, a novel tool to automatically detect and visualise bursts of specific sub-graph patterns within a local community of nodes as anomalies in a heterogeneous network, leveraging scalable tensor analysis methods. One such pattern consists of a set of vertices that form a dense bipartite graph, whose edges share exactly the same set of attributes. We present empirical results of the proposed method on three datasets from distinct application domains, and discuss insights derived from these patterns discovered. Moreover, we empirically show that our algorithm can be feasibly applied to higher dimensional datasets.","PeriodicalId":396746,"journal":{"name":"Int. J. Web Eng. Technol.","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MultiAspectForensics: mining large heterogeneous networks using tensor\",\"authors\":\"Koji Maruhashi, Fan Guo, C. Faloutsos\",\"doi\":\"10.1504/IJWET.2012.050958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern applications such as web knowledge bases, network traffic monitoring and online social networks involve an unprecedented amount of 'heterogeneous' network data, with rich types of interactions among nodes. How can we find patterns and anomalies for heterogeneous networks with millions of edges that have high dimensional attributes, in a scalable way? We introduce MultiAspectForensics, a novel tool to automatically detect and visualise bursts of specific sub-graph patterns within a local community of nodes as anomalies in a heterogeneous network, leveraging scalable tensor analysis methods. One such pattern consists of a set of vertices that form a dense bipartite graph, whose edges share exactly the same set of attributes. We present empirical results of the proposed method on three datasets from distinct application domains, and discuss insights derived from these patterns discovered. Moreover, we empirically show that our algorithm can be feasibly applied to higher dimensional datasets.\",\"PeriodicalId\":396746,\"journal\":{\"name\":\"Int. J. Web Eng. Technol.\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Web Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJWET.2012.050958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Web Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJWET.2012.050958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

网络知识库、网络流量监控和在线社交网络等现代应用涉及前所未有的“异构”网络数据,节点之间具有丰富的交互类型。我们如何以一种可扩展的方式,为具有高维属性的数百万条边的异构网络找到模式和异常?我们介绍了MultiAspectForensics,这是一种新颖的工具,可以自动检测和可视化本地节点社区中特定子图模式的爆发,作为异构网络中的异常,利用可扩展张量分析方法。一个这样的模式由一组顶点组成,这些顶点形成一个密集的二部图,其边共享完全相同的一组属性。我们在来自不同应用领域的三个数据集上展示了所提出方法的实证结果,并讨论了从这些发现的模式中获得的见解。此外,我们的经验表明,我们的算法可以适用于高维数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MultiAspectForensics: mining large heterogeneous networks using tensor
Modern applications such as web knowledge bases, network traffic monitoring and online social networks involve an unprecedented amount of 'heterogeneous' network data, with rich types of interactions among nodes. How can we find patterns and anomalies for heterogeneous networks with millions of edges that have high dimensional attributes, in a scalable way? We introduce MultiAspectForensics, a novel tool to automatically detect and visualise bursts of specific sub-graph patterns within a local community of nodes as anomalies in a heterogeneous network, leveraging scalable tensor analysis methods. One such pattern consists of a set of vertices that form a dense bipartite graph, whose edges share exactly the same set of attributes. We present empirical results of the proposed method on three datasets from distinct application domains, and discuss insights derived from these patterns discovered. Moreover, we empirically show that our algorithm can be feasibly applied to higher dimensional datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信