协同网络:用于精细到精细医学图像分割的协同区域轮廓驱动网络

Anran Liu, Xiangsheng Huang, Tong Li, Pengcheng Ma
{"title":"协同网络:用于精细到精细医学图像分割的协同区域轮廓驱动网络","authors":"Anran Liu, Xiangsheng Huang, Tong Li, Pengcheng Ma","doi":"10.1109/WACV51458.2022.00177","DOIUrl":null,"url":null,"abstract":"In this paper, a fine-to-finer segmentation task is investigated driven by region and contour features collaboratively on Glomerular Electron-Dense Deposits (GEDD) in view of the complementary nature of these two types of features. To this end, a novel network (Co-Net) is presented to dynamically use fine saliency segmentation to guide finer segmentation on boundaries. The whole architecture contains double mutually boosted decoders sharing one common encoder. Specifically, a new structure named Global-guided Interaction Module (GIM) is designed to effectively control the information flow and reduce redundancy in the cross-level feature fusion process. At the same time, the global features are used in it to make the features of each layer gain access to richer context, and a fine segmentation map is obtained initially; Discontinuous Boundary Supervision (DBS) strategy is applied to pay more attention to discontinuity positions and modifying segmentation errors on boundaries. At last, Selective Kernel (SK) is used for dynamical aggregation of the region and contour features to obtain a finer segmentation. Our proposed approach is evaluated on an independent GEDD dataset labeled by pathologists and also on open polyp datasets to test the generalization. Ablation studies show the effectiveness of different modules. On all datasets, our proposal achieves high segmentation accuracy and surpasses previous methods.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Co-Net: A Collaborative Region-Contour-Driven Network for Fine-to-Finer Medical Image Segmentation\",\"authors\":\"Anran Liu, Xiangsheng Huang, Tong Li, Pengcheng Ma\",\"doi\":\"10.1109/WACV51458.2022.00177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a fine-to-finer segmentation task is investigated driven by region and contour features collaboratively on Glomerular Electron-Dense Deposits (GEDD) in view of the complementary nature of these two types of features. To this end, a novel network (Co-Net) is presented to dynamically use fine saliency segmentation to guide finer segmentation on boundaries. The whole architecture contains double mutually boosted decoders sharing one common encoder. Specifically, a new structure named Global-guided Interaction Module (GIM) is designed to effectively control the information flow and reduce redundancy in the cross-level feature fusion process. At the same time, the global features are used in it to make the features of each layer gain access to richer context, and a fine segmentation map is obtained initially; Discontinuous Boundary Supervision (DBS) strategy is applied to pay more attention to discontinuity positions and modifying segmentation errors on boundaries. At last, Selective Kernel (SK) is used for dynamical aggregation of the region and contour features to obtain a finer segmentation. Our proposed approach is evaluated on an independent GEDD dataset labeled by pathologists and also on open polyp datasets to test the generalization. Ablation studies show the effectiveness of different modules. On all datasets, our proposal achieves high segmentation accuracy and surpasses previous methods.\",\"PeriodicalId\":297092,\"journal\":{\"name\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV51458.2022.00177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

鉴于肾小球电子致密沉积物(Glomerular Electron-Dense Deposits, GEDD)两类特征的互补性,本文研究了区域特征和轮廓特征协同驱动的精细到精细的分割任务。为此,提出了一种新颖的网络(Co-Net),动态地使用精细显著性分割来指导边界上的精细分割。整个架构包含两个相互增强的解码器,共享一个公共编码器。具体而言,设计了全局引导交互模块(Global-guided Interaction Module, GIM)结构,以有效控制信息流动,减少跨层特征融合过程中的冗余。同时,利用全局特征使每一层的特征获得更丰富的上下文,初步得到精细的分割图;采用不连续边界监督(DBS)策略,更加关注不连续位置并修正边界上的分割误差。最后,利用选择性核(SK)对区域和轮廓特征进行动态聚合,得到更精细的分割结果。我们提出的方法在由病理学家标记的独立GEDD数据集和开放息肉数据集上进行了评估,以测试其泛化性。烧蚀研究表明了不同模块的有效性。在所有的数据集上,我们的方法都达到了很高的分割精度,并且超越了以前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Co-Net: A Collaborative Region-Contour-Driven Network for Fine-to-Finer Medical Image Segmentation
In this paper, a fine-to-finer segmentation task is investigated driven by region and contour features collaboratively on Glomerular Electron-Dense Deposits (GEDD) in view of the complementary nature of these two types of features. To this end, a novel network (Co-Net) is presented to dynamically use fine saliency segmentation to guide finer segmentation on boundaries. The whole architecture contains double mutually boosted decoders sharing one common encoder. Specifically, a new structure named Global-guided Interaction Module (GIM) is designed to effectively control the information flow and reduce redundancy in the cross-level feature fusion process. At the same time, the global features are used in it to make the features of each layer gain access to richer context, and a fine segmentation map is obtained initially; Discontinuous Boundary Supervision (DBS) strategy is applied to pay more attention to discontinuity positions and modifying segmentation errors on boundaries. At last, Selective Kernel (SK) is used for dynamical aggregation of the region and contour features to obtain a finer segmentation. Our proposed approach is evaluated on an independent GEDD dataset labeled by pathologists and also on open polyp datasets to test the generalization. Ablation studies show the effectiveness of different modules. On all datasets, our proposal achieves high segmentation accuracy and surpasses previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信