{"title":"代数变异上的零环群","authors":"F. Binda, A. Krishna","doi":"10.5802/jep.183","DOIUrl":null,"url":null,"abstract":"We compare various groups of 0-cycles on quasi-projective varieties over a field. As applications, we show that for certain singular projective varieties, the Levine-Weibel Chow group of 0-cycles coincides with the corresponding Friedlander-Voevodsky motivic cohomology. We also show that over an algebraically closed field of positive characteristic, the Chow group of 0-cycles with modulus on a smooth projective variety with respect to a reduced divisor coincides with the Suslin homology of the complement of the divisor. We prove several generalizations of the finiteness theorem of Saito and Sato for the Chow group of 0-cycles over p-adic fields. We also use these results to deduce a torsion theorem for Suslin homology which extends a result of Bloch to open varieties.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Zero-cycle groups on algebraic varieties\",\"authors\":\"F. Binda, A. Krishna\",\"doi\":\"10.5802/jep.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare various groups of 0-cycles on quasi-projective varieties over a field. As applications, we show that for certain singular projective varieties, the Levine-Weibel Chow group of 0-cycles coincides with the corresponding Friedlander-Voevodsky motivic cohomology. We also show that over an algebraically closed field of positive characteristic, the Chow group of 0-cycles with modulus on a smooth projective variety with respect to a reduced divisor coincides with the Suslin homology of the complement of the divisor. We prove several generalizations of the finiteness theorem of Saito and Sato for the Chow group of 0-cycles over p-adic fields. We also use these results to deduce a torsion theorem for Suslin homology which extends a result of Bloch to open varieties.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We compare various groups of 0-cycles on quasi-projective varieties over a field. As applications, we show that for certain singular projective varieties, the Levine-Weibel Chow group of 0-cycles coincides with the corresponding Friedlander-Voevodsky motivic cohomology. We also show that over an algebraically closed field of positive characteristic, the Chow group of 0-cycles with modulus on a smooth projective variety with respect to a reduced divisor coincides with the Suslin homology of the complement of the divisor. We prove several generalizations of the finiteness theorem of Saito and Sato for the Chow group of 0-cycles over p-adic fields. We also use these results to deduce a torsion theorem for Suslin homology which extends a result of Bloch to open varieties.