关于t约束de Bruijn图的支配数

T. Calamoneri, A. Monti, B. Sinaimeri
{"title":"关于t约束de Bruijn图的支配数","authors":"T. Calamoneri, A. Monti, B. Sinaimeri","doi":"10.46298/dmtcs.8879","DOIUrl":null,"url":null,"abstract":"Motivated by the work on the domination number of directed de Bruijn graphs\nand some of its generalizations, in this paper we introduce a natural\ngeneralization of de Bruijn graphs (directed and undirected), namely\n$t$-constrained de Bruijn graphs, where $t$ is a positive integer, and then\nstudy the domination number of these graphs.\n Within the definition of $t$-constrained de Bruijn graphs, de Bruijn and\nKautz graphs correspond to 1-constrained and 2-constrained de Bruijn graphs,\nrespectively. This generalization inherits many structural properties of de\nBruijn graphs and may have similar applications in interconnection networks or\nbioinformatics.\n We establish upper and lower bounds for the domination number on\n$t$-constrained de Bruijn graphs both in the directed and in the undirected\ncase. These bounds are often very close and in some cases we are able to find\nthe exact value.","PeriodicalId":212849,"journal":{"name":"Italian Conference on Theoretical Computer Science","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Domination Number of t-Constrained de Bruijn Graphs\",\"authors\":\"T. Calamoneri, A. Monti, B. Sinaimeri\",\"doi\":\"10.46298/dmtcs.8879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the work on the domination number of directed de Bruijn graphs\\nand some of its generalizations, in this paper we introduce a natural\\ngeneralization of de Bruijn graphs (directed and undirected), namely\\n$t$-constrained de Bruijn graphs, where $t$ is a positive integer, and then\\nstudy the domination number of these graphs.\\n Within the definition of $t$-constrained de Bruijn graphs, de Bruijn and\\nKautz graphs correspond to 1-constrained and 2-constrained de Bruijn graphs,\\nrespectively. This generalization inherits many structural properties of de\\nBruijn graphs and may have similar applications in interconnection networks or\\nbioinformatics.\\n We establish upper and lower bounds for the domination number on\\n$t$-constrained de Bruijn graphs both in the directed and in the undirected\\ncase. These bounds are often very close and in some cases we are able to find\\nthe exact value.\",\"PeriodicalId\":212849,\"journal\":{\"name\":\"Italian Conference on Theoretical Computer Science\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Conference on Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/dmtcs.8879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Conference on Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.8879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于对有向de Bruijn图的支配数及其一些推广的研究,本文引入了de Bruijn图(有向和无向)的一种自然推广,即$t$约束的de Bruijn图,其中$t$是一个正整数,然后研究了这些图的支配数。在$t$约束de Bruijn图的定义中,de Bruijn图和kautz图分别对应于1约束和2约束的de Bruijn图。这种泛化继承了德布鲁因图的许多结构特性,可能在互连网络或生物信息学中有类似的应用。在有向和无向情况下,我们建立了t约束de Bruijn图的支配数的上界和下界。这些边界通常非常接近,在某些情况下,我们能够找到确切的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Domination Number of t-Constrained de Bruijn Graphs
Motivated by the work on the domination number of directed de Bruijn graphs and some of its generalizations, in this paper we introduce a natural generalization of de Bruijn graphs (directed and undirected), namely $t$-constrained de Bruijn graphs, where $t$ is a positive integer, and then study the domination number of these graphs. Within the definition of $t$-constrained de Bruijn graphs, de Bruijn and Kautz graphs correspond to 1-constrained and 2-constrained de Bruijn graphs, respectively. This generalization inherits many structural properties of de Bruijn graphs and may have similar applications in interconnection networks or bioinformatics. We establish upper and lower bounds for the domination number on $t$-constrained de Bruijn graphs both in the directed and in the undirected case. These bounds are often very close and in some cases we are able to find the exact value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信