通过范畴逻辑的一般结构操作语义

S. Staton
{"title":"通过范畴逻辑的一般结构操作语义","authors":"S. Staton","doi":"10.1109/LICS.2008.43","DOIUrl":null,"url":null,"abstract":"Certain principles are fundamental to operational semantics, regardless of the languages or idioms involved. Such principles include rule-based definitions and proof techniques for congruence results. We formulate these principles in the general context of categorical logic. From this general formulation we recover precise results for particular language idioms by interpreting the logic in particular categories. For instance, results for first-order calculi, such as CCS, arise from considering the general results in the category of sets. Results for languages involving substitution and name generation, such as the pi-calculus, arise from considering the general results in categories of sheaves and group actions. As an extended example, we develop a tyft/tyxt-like rule format for open bisimulation in the pi-calculus.","PeriodicalId":298300,"journal":{"name":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"General Structural Operational Semantics through Categorical Logic\",\"authors\":\"S. Staton\",\"doi\":\"10.1109/LICS.2008.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Certain principles are fundamental to operational semantics, regardless of the languages or idioms involved. Such principles include rule-based definitions and proof techniques for congruence results. We formulate these principles in the general context of categorical logic. From this general formulation we recover precise results for particular language idioms by interpreting the logic in particular categories. For instance, results for first-order calculi, such as CCS, arise from considering the general results in the category of sets. Results for languages involving substitution and name generation, such as the pi-calculus, arise from considering the general results in categories of sheaves and group actions. As an extended example, we develop a tyft/tyxt-like rule format for open bisimulation in the pi-calculus.\",\"PeriodicalId\":298300,\"journal\":{\"name\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"435 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2008.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2008.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

某些原则是操作语义的基础,而不考虑所涉及的语言或习惯用法。这些原则包括基于规则的定义和同余结果的证明技术。我们在直言逻辑的一般背景下表述这些原则。从这个一般公式中,我们通过解释特定类别的逻辑来恢复特定语言习语的精确结果。例如,一阶微积分的结果,如CCS,产生于考虑集合范畴的一般结果。涉及替换和名称生成的语言的结果,例如pi-calculus,是通过考虑捆和群行为类别的一般结果而产生的。作为一个扩展的例子,我们开发了一个类似于tyft/tyxt的规则格式,用于pi微积分中的开放双模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Structural Operational Semantics through Categorical Logic
Certain principles are fundamental to operational semantics, regardless of the languages or idioms involved. Such principles include rule-based definitions and proof techniques for congruence results. We formulate these principles in the general context of categorical logic. From this general formulation we recover precise results for particular language idioms by interpreting the logic in particular categories. For instance, results for first-order calculi, such as CCS, arise from considering the general results in the category of sets. Results for languages involving substitution and name generation, such as the pi-calculus, arise from considering the general results in categories of sheaves and group actions. As an extended example, we develop a tyft/tyxt-like rule format for open bisimulation in the pi-calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信