地球物理几何三维反演软件的结构和特点

D. Vagin
{"title":"地球物理几何三维反演软件的结构和特点","authors":"D. Vagin","doi":"10.17212/2782-2001-2021-2-35-46","DOIUrl":null,"url":null,"abstract":"The structure and features of a software package for 3D inversion of geophysical data are considered. The presented software package is focused on solving direct and inverse problems of electrical exploration and engineering geophysics. In addition to the parameters that determine physical properties of the medium, the software package allows you to restore the geometry parameters of the geophysical model, namely layer reliefs and boundaries of three-dimensional inclusions. The inclusions can be in the form of arbitrary hexagons or prisms with a polygonal base. The software package consists of four main subsystems: an interface, subsystems for solving direct and inverse problems, and a client-server part for performing calculations on remote computing nodes. The graphical interface consists of geophysicist-oriented pre- and postprocessor modules that allow you to describe the problem and present the results of its solution in user-friendly terms. To solve direct problems, the finite element method and the technology for dividing the field into normal and anomalous components are used. At the same time, special methods of discretization of the computational domain are used, which make it possible to take into account both the complex three-dimensional structure of the environment and the presence of man-made objects (wells) in the computational domain. To increase the efficiency of solving direct problems, nonconforming grids with cells in the form of arbitrary hexahedrons are used. Methods for efficient calculation of derivatives (with respect to these parameters) necessary for solving inverse problems by the Gauss-Newton method are also described for the geometry parameters. The main idea for efficient derivatives computation is to identify the effect of changing the value of the parameter (used to compute the value of the generalized derivative) on the problem. The main actions performed by the subsystem for solving inverse problems and the features associated with the processing of geometry parameters are described.","PeriodicalId":292298,"journal":{"name":"Analysis and data processing systems","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structure and features of the software for geophysical geometrical 3D inversions\",\"authors\":\"D. Vagin\",\"doi\":\"10.17212/2782-2001-2021-2-35-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structure and features of a software package for 3D inversion of geophysical data are considered. The presented software package is focused on solving direct and inverse problems of electrical exploration and engineering geophysics. In addition to the parameters that determine physical properties of the medium, the software package allows you to restore the geometry parameters of the geophysical model, namely layer reliefs and boundaries of three-dimensional inclusions. The inclusions can be in the form of arbitrary hexagons or prisms with a polygonal base. The software package consists of four main subsystems: an interface, subsystems for solving direct and inverse problems, and a client-server part for performing calculations on remote computing nodes. The graphical interface consists of geophysicist-oriented pre- and postprocessor modules that allow you to describe the problem and present the results of its solution in user-friendly terms. To solve direct problems, the finite element method and the technology for dividing the field into normal and anomalous components are used. At the same time, special methods of discretization of the computational domain are used, which make it possible to take into account both the complex three-dimensional structure of the environment and the presence of man-made objects (wells) in the computational domain. To increase the efficiency of solving direct problems, nonconforming grids with cells in the form of arbitrary hexahedrons are used. Methods for efficient calculation of derivatives (with respect to these parameters) necessary for solving inverse problems by the Gauss-Newton method are also described for the geometry parameters. The main idea for efficient derivatives computation is to identify the effect of changing the value of the parameter (used to compute the value of the generalized derivative) on the problem. The main actions performed by the subsystem for solving inverse problems and the features associated with the processing of geometry parameters are described.\",\"PeriodicalId\":292298,\"journal\":{\"name\":\"Analysis and data processing systems\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and data processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/2782-2001-2021-2-35-46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and data processing systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/2782-2001-2021-2-35-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了地球物理数据三维反演软件的结构和特点。该软件包主要用于解决电力勘探和工程地球物理的正逆问题。除了确定介质物理性质的参数外,该软件包还允许您恢复地球物理模型的几何参数,即三维包裹体的层起伏和边界。内含物可以是任意六边形或多角形基底的棱柱形。该软件包由四个主要子系统组成:接口、求解正反问题的子系统和在远程计算节点上执行计算的客户机-服务器部分。图形界面由面向地球物理学家的预处理和后处理模块组成,允许您以用户友好的术语描述问题并呈现其解决方案的结果。为了解决直接问题,采用了有限元法和将场划分为正常分量和异常分量的技术。同时,采用了特殊的计算域离散化方法,使计算域中既可以考虑环境的复杂三维结构,也可以考虑人工物体(井)的存在。为了提高求解直接问题的效率,采用了任意六面体形式的单元格。对于几何参数,还描述了用高斯-牛顿法求解反问题所必需的导数(相对于这些参数)的有效计算方法。有效导数计算的主要思想是识别改变参数值(用于计算广义导数值)对问题的影响。描述了该子系统求解逆问题的主要动作以及与几何参数处理相关的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The structure and features of the software for geophysical geometrical 3D inversions
The structure and features of a software package for 3D inversion of geophysical data are considered. The presented software package is focused on solving direct and inverse problems of electrical exploration and engineering geophysics. In addition to the parameters that determine physical properties of the medium, the software package allows you to restore the geometry parameters of the geophysical model, namely layer reliefs and boundaries of three-dimensional inclusions. The inclusions can be in the form of arbitrary hexagons or prisms with a polygonal base. The software package consists of four main subsystems: an interface, subsystems for solving direct and inverse problems, and a client-server part for performing calculations on remote computing nodes. The graphical interface consists of geophysicist-oriented pre- and postprocessor modules that allow you to describe the problem and present the results of its solution in user-friendly terms. To solve direct problems, the finite element method and the technology for dividing the field into normal and anomalous components are used. At the same time, special methods of discretization of the computational domain are used, which make it possible to take into account both the complex three-dimensional structure of the environment and the presence of man-made objects (wells) in the computational domain. To increase the efficiency of solving direct problems, nonconforming grids with cells in the form of arbitrary hexahedrons are used. Methods for efficient calculation of derivatives (with respect to these parameters) necessary for solving inverse problems by the Gauss-Newton method are also described for the geometry parameters. The main idea for efficient derivatives computation is to identify the effect of changing the value of the parameter (used to compute the value of the generalized derivative) on the problem. The main actions performed by the subsystem for solving inverse problems and the features associated with the processing of geometry parameters are described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信