微分方程系统参数的数值优化

Josef Martínek, V. Kučera
{"title":"微分方程系统参数的数值优化","authors":"Josef Martínek, V. Kučera","doi":"10.21136/panm.2022.12","DOIUrl":null,"url":null,"abstract":"We present results on the estimation of unknown parameters in systems of ordinary differential equations in order to fit the output of models to real data. The numerical method is based on the nonlinear least squares problem along with the solution of sensitivity equations corresponding to the differential equations. We will present the performance of the method on the problem of fitting the output of basic compartmental epidemic models to data from the Covid-19 epidemic. This allows us to draw several conclusions on the natural limitations of these models and their validity.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"33 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical optimization of parameters in systems of differential equations\",\"authors\":\"Josef Martínek, V. Kučera\",\"doi\":\"10.21136/panm.2022.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present results on the estimation of unknown parameters in systems of ordinary differential equations in order to fit the output of models to real data. The numerical method is based on the nonlinear least squares problem along with the solution of sensitivity equations corresponding to the differential equations. We will present the performance of the method on the problem of fitting the output of basic compartmental epidemic models to data from the Covid-19 epidemic. This allows us to draw several conclusions on the natural limitations of these models and their validity.\",\"PeriodicalId\":197168,\"journal\":{\"name\":\"Programs and Algorithms of Numerical Mathematics 21\",\"volume\":\"33 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Programs and Algorithms of Numerical Mathematics 21\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21136/panm.2022.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了使模型的输出与实际数据拟合,我们给出了常微分方程系统中未知参数估计的结果。该数值方法是基于非线性最小二乘问题以及与微分方程对应的灵敏度方程的求解。我们将展示该方法在将基本分区流行病模型的输出拟合到Covid-19流行病数据的问题上的性能。这使我们能够对这些模型的自然局限性及其有效性得出几个结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical optimization of parameters in systems of differential equations
We present results on the estimation of unknown parameters in systems of ordinary differential equations in order to fit the output of models to real data. The numerical method is based on the nonlinear least squares problem along with the solution of sensitivity equations corresponding to the differential equations. We will present the performance of the method on the problem of fitting the output of basic compartmental epidemic models to data from the Covid-19 epidemic. This allows us to draw several conclusions on the natural limitations of these models and their validity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信