基于成像域无网格离散化的介质目标重建

R. Gao, Z. Su, M. Tong
{"title":"基于成像域无网格离散化的介质目标重建","authors":"R. Gao, Z. Su, M. Tong","doi":"10.1109/COMPEM.2018.8496501","DOIUrl":null,"url":null,"abstract":"Reconstruction of dielectric objects by integral equation approach requires to alternatively solve the forward scattering integral equation (FSIE) and inverse scattering integral equation (ISIE) in the frame of Born iterative method (BIM) or distorted BIM (DBIM). Solving the FSIE is very tedious because an intensive calculation of volume integrals over imaging domain is required. In this work, we use a novel meshless scheme to simplify the calculation of volume integrals in the solution of FSIE so that the reconstruction can be accelerated. The meshless scheme changes the volume integrals into boundary integrals through the Green-Gauss theorem after the integrands are regularized in the imaging domain and the volumetric discretization of the imaging domain is not necessary. The ISIE is solved by the Gauss-Newton minimization approach (GNMA) with the multiplicative regularization method (MRM). A typical numerical example is presented to demonstrate the inversion approach and good results have been obtained.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstruction of Dielectric Objects Based on Meshless Discretization of Imaging Domain\",\"authors\":\"R. Gao, Z. Su, M. Tong\",\"doi\":\"10.1109/COMPEM.2018.8496501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstruction of dielectric objects by integral equation approach requires to alternatively solve the forward scattering integral equation (FSIE) and inverse scattering integral equation (ISIE) in the frame of Born iterative method (BIM) or distorted BIM (DBIM). Solving the FSIE is very tedious because an intensive calculation of volume integrals over imaging domain is required. In this work, we use a novel meshless scheme to simplify the calculation of volume integrals in the solution of FSIE so that the reconstruction can be accelerated. The meshless scheme changes the volume integrals into boundary integrals through the Green-Gauss theorem after the integrands are regularized in the imaging domain and the volumetric discretization of the imaging domain is not necessary. The ISIE is solved by the Gauss-Newton minimization approach (GNMA) with the multiplicative regularization method (MRM). A typical numerical example is presented to demonstrate the inversion approach and good results have been obtained.\",\"PeriodicalId\":221352,\"journal\":{\"name\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEM.2018.8496501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用积分方程方法重建介质物体,需要在Born迭代法(BIM)或畸变BIM (DBIM)框架下交替求解正向散射积分方程(FSIE)和逆散射积分方程(ISIE)。由于需要在成像域上进行大量的体积积分计算,求解FSIE是非常繁琐的。在这项工作中,我们使用一种新的无网格格式来简化FSIE解中体积积分的计算,从而加快重建速度。无网格方案通过格林-高斯定理将体积积分在成像域中正则化后转化为边界积分,无需对成像域进行体积离散化。采用乘性正则化方法(MRM)求解高斯-牛顿最小化方法(GNMA)。给出了一个典型的数值算例,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of Dielectric Objects Based on Meshless Discretization of Imaging Domain
Reconstruction of dielectric objects by integral equation approach requires to alternatively solve the forward scattering integral equation (FSIE) and inverse scattering integral equation (ISIE) in the frame of Born iterative method (BIM) or distorted BIM (DBIM). Solving the FSIE is very tedious because an intensive calculation of volume integrals over imaging domain is required. In this work, we use a novel meshless scheme to simplify the calculation of volume integrals in the solution of FSIE so that the reconstruction can be accelerated. The meshless scheme changes the volume integrals into boundary integrals through the Green-Gauss theorem after the integrands are regularized in the imaging domain and the volumetric discretization of the imaging domain is not necessary. The ISIE is solved by the Gauss-Newton minimization approach (GNMA) with the multiplicative regularization method (MRM). A typical numerical example is presented to demonstrate the inversion approach and good results have been obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信