基于概率的软件系统聚类方法

A. Corazza, S. Martino, G. Scanniello
{"title":"基于概率的软件系统聚类方法","authors":"A. Corazza, S. Martino, G. Scanniello","doi":"10.1109/CSMR.2010.36","DOIUrl":null,"url":null,"abstract":"In this paper we present a clustering based approach to partition software systems into meaningful subsystems. In particular, the approach uses lexical information extracted from four zones in Java classes, which may provide a different contribution towards software systems partitioning. To automatically weigh these zones, we introduced a probabilistic model, and applied the Expectation-Maximization (EM) algorithm. To group classes according to the considered lexical information, we customized the well-known K-Medoids algorithm. To assess the approach and the implemented supporting system, we have conducted a case study on six open source software systems.","PeriodicalId":307062,"journal":{"name":"2010 14th European Conference on Software Maintenance and Reengineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"A Probabilistic Based Approach towards Software System Clustering\",\"authors\":\"A. Corazza, S. Martino, G. Scanniello\",\"doi\":\"10.1109/CSMR.2010.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a clustering based approach to partition software systems into meaningful subsystems. In particular, the approach uses lexical information extracted from four zones in Java classes, which may provide a different contribution towards software systems partitioning. To automatically weigh these zones, we introduced a probabilistic model, and applied the Expectation-Maximization (EM) algorithm. To group classes according to the considered lexical information, we customized the well-known K-Medoids algorithm. To assess the approach and the implemented supporting system, we have conducted a case study on six open source software systems.\",\"PeriodicalId\":307062,\"journal\":{\"name\":\"2010 14th European Conference on Software Maintenance and Reengineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 14th European Conference on Software Maintenance and Reengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSMR.2010.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 14th European Conference on Software Maintenance and Reengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMR.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

本文提出了一种基于聚类的方法,将软件系统划分为有意义的子系统。特别是,该方法使用从Java类中的四个区域提取的词法信息,这可能为软件系统分区提供不同的贡献。为了自动权衡这些区域,我们引入了一个概率模型,并应用了期望最大化(EM)算法。为了根据考虑的词汇信息对类进行分组,我们定制了著名的k - mediids算法。为了评估该方法和实施的支援系统,我们对六个开放源码软件系统进行了个案研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Probabilistic Based Approach towards Software System Clustering
In this paper we present a clustering based approach to partition software systems into meaningful subsystems. In particular, the approach uses lexical information extracted from four zones in Java classes, which may provide a different contribution towards software systems partitioning. To automatically weigh these zones, we introduced a probabilistic model, and applied the Expectation-Maximization (EM) algorithm. To group classes according to the considered lexical information, we customized the well-known K-Medoids algorithm. To assess the approach and the implemented supporting system, we have conducted a case study on six open source software systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信