{"title":"卷积神经网络(CNN)用于图像检测和识别","authors":"Rahul Chauhan, K. Ghanshala, R. Joshi","doi":"10.1109/ICSCCC.2018.8703316","DOIUrl":null,"url":null,"abstract":"Deep Learning algorithms are designed in such a way that they mimic the function of the human cerebral cortex. These algorithms are representations of deep neural networks i.e. neural networks with many hidden layers. Convolutional neural networks are deep learning algorithms that can train large datasets with millions of parameters, in form of 2D images as input and convolve it with filters to produce the desired outputs. In this article, CNN models are built to evaluate its performance on image recognition and detection datasets. The algorithm is implemented on MNIST and CIFAR-10 dataset and its performance are evaluated. The accuracy of models on MNIST is 99.6 %, CIFAR-10 is using real-time data augmentation and dropout on CPU unit.","PeriodicalId":148491,"journal":{"name":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","volume":"767 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"192","resultStr":"{\"title\":\"Convolutional Neural Network (CNN) for Image Detection and Recognition\",\"authors\":\"Rahul Chauhan, K. Ghanshala, R. Joshi\",\"doi\":\"10.1109/ICSCCC.2018.8703316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning algorithms are designed in such a way that they mimic the function of the human cerebral cortex. These algorithms are representations of deep neural networks i.e. neural networks with many hidden layers. Convolutional neural networks are deep learning algorithms that can train large datasets with millions of parameters, in form of 2D images as input and convolve it with filters to produce the desired outputs. In this article, CNN models are built to evaluate its performance on image recognition and detection datasets. The algorithm is implemented on MNIST and CIFAR-10 dataset and its performance are evaluated. The accuracy of models on MNIST is 99.6 %, CIFAR-10 is using real-time data augmentation and dropout on CPU unit.\",\"PeriodicalId\":148491,\"journal\":{\"name\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"volume\":\"767 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"192\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCCC.2018.8703316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCCC.2018.8703316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional Neural Network (CNN) for Image Detection and Recognition
Deep Learning algorithms are designed in such a way that they mimic the function of the human cerebral cortex. These algorithms are representations of deep neural networks i.e. neural networks with many hidden layers. Convolutional neural networks are deep learning algorithms that can train large datasets with millions of parameters, in form of 2D images as input and convolve it with filters to produce the desired outputs. In this article, CNN models are built to evaluate its performance on image recognition and detection datasets. The algorithm is implemented on MNIST and CIFAR-10 dataset and its performance are evaluated. The accuracy of models on MNIST is 99.6 %, CIFAR-10 is using real-time data augmentation and dropout on CPU unit.