{"title":"基于CMOS标准单元设计的全数字ΔΣ包络调制器","authors":"Chien-Hung Kuo, Shu-Li Liao","doi":"10.1109/NEWCAS.2011.5981321","DOIUrl":null,"url":null,"abstract":"This paper presents an all-digital 4-bit delta-sigma (ΔΣ) modulator for envelope elimination and restoration (EER)-based polar transmitters. A fast feedback approach is devised by combining the digital truncator with path gains to reduce the propagation delay of feedback loops in modulators. The CMOS standard cell-based design could hence be utilized to implement the proposed modulator at a sampling frequency of 182 MHz. The noise transfer function of the presented ΔΣ modulator has been optimized to obtain a maximally flat noise band to easily meet the EDGE spectrum mask. Experiment results show the presented ΔΣ modulator has the noise power beneath −60 dB below the full-scale EDGE signal within ±20 MHz of the carrier frequency. The measured adjacent channel power ratios and alternate channel power ratio of the proposed modulator also give a 6 dB margin to the EDGE specification at 400 kHz and 600 kHz offsets.","PeriodicalId":271676,"journal":{"name":"2011 IEEE 9th International New Circuits and systems conference","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An all-digital ΔΣ envelope modulator for EER-based transmitters based on CMOS standard cell design\",\"authors\":\"Chien-Hung Kuo, Shu-Li Liao\",\"doi\":\"10.1109/NEWCAS.2011.5981321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an all-digital 4-bit delta-sigma (ΔΣ) modulator for envelope elimination and restoration (EER)-based polar transmitters. A fast feedback approach is devised by combining the digital truncator with path gains to reduce the propagation delay of feedback loops in modulators. The CMOS standard cell-based design could hence be utilized to implement the proposed modulator at a sampling frequency of 182 MHz. The noise transfer function of the presented ΔΣ modulator has been optimized to obtain a maximally flat noise band to easily meet the EDGE spectrum mask. Experiment results show the presented ΔΣ modulator has the noise power beneath −60 dB below the full-scale EDGE signal within ±20 MHz of the carrier frequency. The measured adjacent channel power ratios and alternate channel power ratio of the proposed modulator also give a 6 dB margin to the EDGE specification at 400 kHz and 600 kHz offsets.\",\"PeriodicalId\":271676,\"journal\":{\"name\":\"2011 IEEE 9th International New Circuits and systems conference\",\"volume\":\"182 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 9th International New Circuits and systems conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2011.5981321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th International New Circuits and systems conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2011.5981321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An all-digital ΔΣ envelope modulator for EER-based transmitters based on CMOS standard cell design
This paper presents an all-digital 4-bit delta-sigma (ΔΣ) modulator for envelope elimination and restoration (EER)-based polar transmitters. A fast feedback approach is devised by combining the digital truncator with path gains to reduce the propagation delay of feedback loops in modulators. The CMOS standard cell-based design could hence be utilized to implement the proposed modulator at a sampling frequency of 182 MHz. The noise transfer function of the presented ΔΣ modulator has been optimized to obtain a maximally flat noise band to easily meet the EDGE spectrum mask. Experiment results show the presented ΔΣ modulator has the noise power beneath −60 dB below the full-scale EDGE signal within ±20 MHz of the carrier frequency. The measured adjacent channel power ratios and alternate channel power ratio of the proposed modulator also give a 6 dB margin to the EDGE specification at 400 kHz and 600 kHz offsets.