基于最小二乘蒙特卡罗方法的早期练习边界的自举

P. Létourneau, Lars Stentoft
{"title":"基于最小二乘蒙特卡罗方法的早期练习边界的自举","authors":"P. Létourneau, Lars Stentoft","doi":"10.2139/ssrn.3503049","DOIUrl":null,"url":null,"abstract":"This paper proposes an innovative algorithm that significantly improves on the approximation of the optimal early exercise boundary obtained with simulation based methods for American option pricing. The method works by exploiting and leveraging the information in multiple cross-sectional regressions to the fullest by averaging the individually obtained estimates at each early exercise step, starting from just before maturity, in the backwards induction algorithm. With this method, less errors are accumulated, and as a result of this, the price estimate is essentially unbiased even for long maturity options. Numerical results demonstrate the improvements from our method and show that these are robust to the choice of simulation setup, the characteristics of the option, and the dimensionality of the problem. Finally, because our method naturally disassociates the estimation of the optimal early exercise boundary from the pricing of the option, significant efficiency gains can be obtained by using less simulated paths and repetitions to estimate the optimal early exercise boundary than with the regular method.","PeriodicalId":293888,"journal":{"name":"Econometric Modeling: Derivatives eJournal","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bootstrapping the Early Exercise Boundary in the Least-Squares Monte Carlo Method\",\"authors\":\"P. Létourneau, Lars Stentoft\",\"doi\":\"10.2139/ssrn.3503049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an innovative algorithm that significantly improves on the approximation of the optimal early exercise boundary obtained with simulation based methods for American option pricing. The method works by exploiting and leveraging the information in multiple cross-sectional regressions to the fullest by averaging the individually obtained estimates at each early exercise step, starting from just before maturity, in the backwards induction algorithm. With this method, less errors are accumulated, and as a result of this, the price estimate is essentially unbiased even for long maturity options. Numerical results demonstrate the improvements from our method and show that these are robust to the choice of simulation setup, the characteristics of the option, and the dimensionality of the problem. Finally, because our method naturally disassociates the estimation of the optimal early exercise boundary from the pricing of the option, significant efficiency gains can be obtained by using less simulated paths and repetitions to estimate the optimal early exercise boundary than with the regular method.\",\"PeriodicalId\":293888,\"journal\":{\"name\":\"Econometric Modeling: Derivatives eJournal\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Derivatives eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3503049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Derivatives eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3503049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种创新的美式期权定价算法,该算法显著改进了基于仿真方法的最优早期行权边界逼近。该方法的工作原理是利用和充分利用多个横截面回归中的信息,通过在每个早期练习步骤中平均单独获得的估计值,从成熟之前开始,在反向归纳算法中。使用这种方法,累积的误差较小,因此,即使对于长期期权,价格估计也基本上是无偏的。数值结果证明了该方法的改进,并表明该方法对仿真设置的选择、选项的特性和问题的维数具有鲁棒性。最后,由于我们的方法自然地将最优早期运动边界的估计与期权定价分离开来,因此与常规方法相比,使用较少的模拟路径和重复次数来估计最优早期运动边界可以获得显著的效率收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrapping the Early Exercise Boundary in the Least-Squares Monte Carlo Method
This paper proposes an innovative algorithm that significantly improves on the approximation of the optimal early exercise boundary obtained with simulation based methods for American option pricing. The method works by exploiting and leveraging the information in multiple cross-sectional regressions to the fullest by averaging the individually obtained estimates at each early exercise step, starting from just before maturity, in the backwards induction algorithm. With this method, less errors are accumulated, and as a result of this, the price estimate is essentially unbiased even for long maturity options. Numerical results demonstrate the improvements from our method and show that these are robust to the choice of simulation setup, the characteristics of the option, and the dimensionality of the problem. Finally, because our method naturally disassociates the estimation of the optimal early exercise boundary from the pricing of the option, significant efficiency gains can be obtained by using less simulated paths and repetitions to estimate the optimal early exercise boundary than with the regular method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信