结合时钟随机化和重复的AES抗侧信道实现

M. Moraitis, Martin Brisfors, E. Dubrova, Niklas Lindskog, Håkan Englund
{"title":"结合时钟随机化和重复的AES抗侧信道实现","authors":"M. Moraitis, Martin Brisfors, E. Dubrova, Niklas Lindskog, Håkan Englund","doi":"10.1109/ISCAS46773.2023.10181621","DOIUrl":null,"url":null,"abstract":"Deep learning transformed side-channel analysis and made many conventional countermeasures obsolete. This brings the need for more effective, deep learning-resistant defense mechanisms. We propose a method for protecting hardware implementations of cryptographic algorithms that combines clock randomization with duplication. The presented method ensures that the duplicated block generates algorithmic noise that is dependent on the input of the primary block and has a similar power profile. In addition, the duplicated block does not create any secret key-related leakage. We evaluate the presented method on the example of the Advanced Encryption Standard (AES) algorithm implemented in FPGA. Our experimental results show that the protected AES implementation is resistant to deep learning-based power analysis.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"881 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A side-channel resistant implementation of AES combining clock randomization with duplication\",\"authors\":\"M. Moraitis, Martin Brisfors, E. Dubrova, Niklas Lindskog, Håkan Englund\",\"doi\":\"10.1109/ISCAS46773.2023.10181621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning transformed side-channel analysis and made many conventional countermeasures obsolete. This brings the need for more effective, deep learning-resistant defense mechanisms. We propose a method for protecting hardware implementations of cryptographic algorithms that combines clock randomization with duplication. The presented method ensures that the duplicated block generates algorithmic noise that is dependent on the input of the primary block and has a similar power profile. In addition, the duplicated block does not create any secret key-related leakage. We evaluate the presented method on the example of the Advanced Encryption Standard (AES) algorithm implemented in FPGA. Our experimental results show that the protected AES implementation is resistant to deep learning-based power analysis.\",\"PeriodicalId\":177320,\"journal\":{\"name\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"881 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS46773.2023.10181621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

深度学习改变了侧信道分析,淘汰了许多传统的对策。这就需要更有效的、抗深度学习的防御机制。我们提出了一种结合时钟随机化和复制的保护加密算法硬件实现的方法。所提出的方法确保重复块产生的算法噪声依赖于主块的输入,并且具有相似的功率分布。此外,复制的块不会造成任何与密钥相关的泄漏。以FPGA实现的高级加密标准(AES)算法为例,对该方法进行了评价。我们的实验结果表明,受保护的AES实现可以抵抗基于深度学习的功率分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A side-channel resistant implementation of AES combining clock randomization with duplication
Deep learning transformed side-channel analysis and made many conventional countermeasures obsolete. This brings the need for more effective, deep learning-resistant defense mechanisms. We propose a method for protecting hardware implementations of cryptographic algorithms that combines clock randomization with duplication. The presented method ensures that the duplicated block generates algorithmic noise that is dependent on the input of the primary block and has a similar power profile. In addition, the duplicated block does not create any secret key-related leakage. We evaluate the presented method on the example of the Advanced Encryption Standard (AES) algorithm implemented in FPGA. Our experimental results show that the protected AES implementation is resistant to deep learning-based power analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信