研究监督下降法在PEC封闭腔室电磁成像中的应用

Seth Cathers, I. Jeffrey, C. Gilmore
{"title":"研究监督下降法在PEC封闭腔室电磁成像中的应用","authors":"Seth Cathers, I. Jeffrey, C. Gilmore","doi":"10.23919/EuCAP57121.2023.10133306","DOIUrl":null,"url":null,"abstract":"We consider the use of the Supervised Descent Method (SDM) for 2D transverse magnetic imaging inside perfect electric conductor (PEC) enclosed electromagnetic imaging problems. When the electromagnetic imaging region is surrounded by PEC, and the background permittivity is lossless, classic optimization-based inversion algorithms such as Contrast Source Inversion sometimes provide degraded results compared to those obtained from unbounded domains. The SDM, by learning average search directions based on a large synthetic data set, may be able to avoid certain local minima that normally trap other optimization methods. Through the use of synthetic examples, we show that SDM can provide improved performance within an enclosed chamber.","PeriodicalId":103360,"journal":{"name":"2023 17th European Conference on Antennas and Propagation (EuCAP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the use of the Supervised Descent Method for Electromagnetic Imaging in PEC Enclosed Chambers\",\"authors\":\"Seth Cathers, I. Jeffrey, C. Gilmore\",\"doi\":\"10.23919/EuCAP57121.2023.10133306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the use of the Supervised Descent Method (SDM) for 2D transverse magnetic imaging inside perfect electric conductor (PEC) enclosed electromagnetic imaging problems. When the electromagnetic imaging region is surrounded by PEC, and the background permittivity is lossless, classic optimization-based inversion algorithms such as Contrast Source Inversion sometimes provide degraded results compared to those obtained from unbounded domains. The SDM, by learning average search directions based on a large synthetic data set, may be able to avoid certain local minima that normally trap other optimization methods. Through the use of synthetic examples, we show that SDM can provide improved performance within an enclosed chamber.\",\"PeriodicalId\":103360,\"journal\":{\"name\":\"2023 17th European Conference on Antennas and Propagation (EuCAP)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 17th European Conference on Antennas and Propagation (EuCAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EuCAP57121.2023.10133306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EuCAP57121.2023.10133306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑使用监督下降法(SDM)来解决理想电导体(PEC)内部的二维横向磁成像问题。当电磁成像区域被PEC包围时,背景介电常数是无损的,传统的基于优化的反演算法(如Contrast Source inversion)有时会提供比从无界域获得的结果更差的结果。SDM通过学习基于大型合成数据集的平均搜索方向,可能能够避免某些通常会陷入其他优化方法的局部最小值。通过使用合成的例子,我们表明SDM可以在封闭的腔室中提供更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the use of the Supervised Descent Method for Electromagnetic Imaging in PEC Enclosed Chambers
We consider the use of the Supervised Descent Method (SDM) for 2D transverse magnetic imaging inside perfect electric conductor (PEC) enclosed electromagnetic imaging problems. When the electromagnetic imaging region is surrounded by PEC, and the background permittivity is lossless, classic optimization-based inversion algorithms such as Contrast Source Inversion sometimes provide degraded results compared to those obtained from unbounded domains. The SDM, by learning average search directions based on a large synthetic data set, may be able to avoid certain local minima that normally trap other optimization methods. Through the use of synthetic examples, we show that SDM can provide improved performance within an enclosed chamber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信