基于改进PSO-RBF神经网络的目标位置预测研究

Zhan Wang, Shuang Xia, Hua Yu, Yangchun Wang
{"title":"基于改进PSO-RBF神经网络的目标位置预测研究","authors":"Zhan Wang, Shuang Xia, Hua Yu, Yangchun Wang","doi":"10.1145/3564858.3564869","DOIUrl":null,"url":null,"abstract":"In order to make the antenna point to the target position in real time and obtain the current target parameters, an improved PSO-RBF neural network for antenna target position prediction was proposed. Based on the RBF neural network model, the improved PSO-RBF algorithm was used to optimize the network parameters, and the prediction model was established on the basis of the measured data. Simulation results show that the prediction effect of this model is better than traditional RBF neural network and conventional PSO-RBF neural network, and it has better practical value.","PeriodicalId":331960,"journal":{"name":"Proceedings of the 5th International Conference on Information Management and Management Science","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on target location prediction based on improved PSO-RBF Neural Network\",\"authors\":\"Zhan Wang, Shuang Xia, Hua Yu, Yangchun Wang\",\"doi\":\"10.1145/3564858.3564869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to make the antenna point to the target position in real time and obtain the current target parameters, an improved PSO-RBF neural network for antenna target position prediction was proposed. Based on the RBF neural network model, the improved PSO-RBF algorithm was used to optimize the network parameters, and the prediction model was established on the basis of the measured data. Simulation results show that the prediction effect of this model is better than traditional RBF neural network and conventional PSO-RBF neural network, and it has better practical value.\",\"PeriodicalId\":331960,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Information Management and Management Science\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Information Management and Management Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3564858.3564869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Information Management and Management Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564858.3564869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了使天线实时指向目标位置并获取当前目标参数,提出了一种改进的PSO-RBF神经网络用于天线目标位置预测。在RBF神经网络模型的基础上,采用改进的PSO-RBF算法对网络参数进行优化,并基于实测数据建立预测模型。仿真结果表明,该模型的预测效果优于传统的RBF神经网络和传统的PSO-RBF神经网络,具有较好的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on target location prediction based on improved PSO-RBF Neural Network
In order to make the antenna point to the target position in real time and obtain the current target parameters, an improved PSO-RBF neural network for antenna target position prediction was proposed. Based on the RBF neural network model, the improved PSO-RBF algorithm was used to optimize the network parameters, and the prediction model was established on the basis of the measured data. Simulation results show that the prediction effect of this model is better than traditional RBF neural network and conventional PSO-RBF neural network, and it has better practical value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信