{"title":"基于改进遗传算法(MfGA)的模糊c均值聚类的多级彩色图像分割","authors":"Sunanda Das, S. De","doi":"10.1109/ICRCICN.2016.7813635","DOIUrl":null,"url":null,"abstract":"Convergence to local minima point is one of the major disadvantages of conventional fuzzy c-means (FCM). Due to this drawback, segmentation result may hamper for not selecting the cluster centroids properly. To overcome this, a modified genetic (MfGA) algorithm is proposed to improve the performance of FCM. The optimized class levels derived from the MfGA are employed as initial input to FCM for finding global optimal solutions in a large search space. An extensive performance comparison of the proposed MfGA inspired conventional FCM and GA based FCM on two multilevel color images establishes the superiority of the proposed approach.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multilevel color image segmentation using modified genetic algorithm (MfGA) inspired fuzzy c-means clustering\",\"authors\":\"Sunanda Das, S. De\",\"doi\":\"10.1109/ICRCICN.2016.7813635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convergence to local minima point is one of the major disadvantages of conventional fuzzy c-means (FCM). Due to this drawback, segmentation result may hamper for not selecting the cluster centroids properly. To overcome this, a modified genetic (MfGA) algorithm is proposed to improve the performance of FCM. The optimized class levels derived from the MfGA are employed as initial input to FCM for finding global optimal solutions in a large search space. An extensive performance comparison of the proposed MfGA inspired conventional FCM and GA based FCM on two multilevel color images establishes the superiority of the proposed approach.\",\"PeriodicalId\":254393,\"journal\":{\"name\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2016.7813635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilevel color image segmentation using modified genetic algorithm (MfGA) inspired fuzzy c-means clustering
Convergence to local minima point is one of the major disadvantages of conventional fuzzy c-means (FCM). Due to this drawback, segmentation result may hamper for not selecting the cluster centroids properly. To overcome this, a modified genetic (MfGA) algorithm is proposed to improve the performance of FCM. The optimized class levels derived from the MfGA are employed as initial input to FCM for finding global optimal solutions in a large search space. An extensive performance comparison of the proposed MfGA inspired conventional FCM and GA based FCM on two multilevel color images establishes the superiority of the proposed approach.