python软件事务性内存的形式化验证方法

B. Kordic, M. Popovic, S. Ghilezan, I. Basicevic
{"title":"python软件事务性内存的形式化验证方法","authors":"B. Kordic, M. Popovic, S. Ghilezan, I. Basicevic","doi":"10.1145/3123779.3123788","DOIUrl":null,"url":null,"abstract":"Although Python is one of the most widely used programming languages, and it is a foundation for a variety of parallel and distributed computing frameworks, it still lacks an applicable and reliable software transactional memory. In this paper, we present an approach to formal verification of a Python Software Transactional Memory (PSTM) solution using UPPAAL tool. The aims are (i) to apply a formal verification process to a real STM implementation in order to derive a faithful STM model based on a PSTM design and (ii) to use developed PSTM model for automated machine-checked formal verification of core system properties such as safety and liveness using a model checker tool. Firstly, an architecture of PSTM solution is introduced. Secondly, formalization and a PSTM system model are analyzed. Finally, core PSTM system's properties are verified, namely safety, liveness, and reachability. Utilizing a UPPAAL's model checker tool it is successfully verified that the PSTM system model satisfies each of the three formerly mentioned properties.","PeriodicalId":405980,"journal":{"name":"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An approach to formal verification of python software transactional memory\",\"authors\":\"B. Kordic, M. Popovic, S. Ghilezan, I. Basicevic\",\"doi\":\"10.1145/3123779.3123788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although Python is one of the most widely used programming languages, and it is a foundation for a variety of parallel and distributed computing frameworks, it still lacks an applicable and reliable software transactional memory. In this paper, we present an approach to formal verification of a Python Software Transactional Memory (PSTM) solution using UPPAAL tool. The aims are (i) to apply a formal verification process to a real STM implementation in order to derive a faithful STM model based on a PSTM design and (ii) to use developed PSTM model for automated machine-checked formal verification of core system properties such as safety and liveness using a model checker tool. Firstly, an architecture of PSTM solution is introduced. Secondly, formalization and a PSTM system model are analyzed. Finally, core PSTM system's properties are verified, namely safety, liveness, and reachability. Utilizing a UPPAAL's model checker tool it is successfully verified that the PSTM system model satisfies each of the three formerly mentioned properties.\",\"PeriodicalId\":405980,\"journal\":{\"name\":\"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3123779.3123788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth European Conference on the Engineering of Computer-Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3123779.3123788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

尽管Python是使用最广泛的编程语言之一,并且它是各种并行和分布式计算框架的基础,但它仍然缺乏适用且可靠的软件事务性内存。在本文中,我们提出了一种使用UPPAAL工具对Python软件事务性内存(PSTM)解决方案进行形式化验证的方法。目标是(i)将正式验证过程应用于真实的STM实现,以便基于PSTM设计推导出忠实的STM模型;(ii)使用开发的PSTM模型,使用模型检查工具对核心系统属性(如安全性和活动性)进行自动机器检查的正式验证。首先,介绍了PSTM方案的体系结构。其次,分析了系统的形式化和系统模型。最后,验证了核心PSTM系统的安全性、活动性和可达性。利用UPPAAL的模型检查工具,成功地验证了PSTM系统模型满足前面提到的三个属性中的每一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to formal verification of python software transactional memory
Although Python is one of the most widely used programming languages, and it is a foundation for a variety of parallel and distributed computing frameworks, it still lacks an applicable and reliable software transactional memory. In this paper, we present an approach to formal verification of a Python Software Transactional Memory (PSTM) solution using UPPAAL tool. The aims are (i) to apply a formal verification process to a real STM implementation in order to derive a faithful STM model based on a PSTM design and (ii) to use developed PSTM model for automated machine-checked formal verification of core system properties such as safety and liveness using a model checker tool. Firstly, an architecture of PSTM solution is introduced. Secondly, formalization and a PSTM system model are analyzed. Finally, core PSTM system's properties are verified, namely safety, liveness, and reachability. Utilizing a UPPAAL's model checker tool it is successfully verified that the PSTM system model satisfies each of the three formerly mentioned properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信