{"title":"海洋哺乳动物的信号协调:来自声音相互作用时域的线索","authors":"D. Todt, F. Veit","doi":"10.1109/ISSPA.2005.1581066","DOIUrl":null,"url":null,"abstract":"Marine mammals are renowned for a precise coordination of social behaviors. To further elucidate these accomplishments, we investigated the time domain of vocal interactions and also relationships between the quality and the coordination mode of signals. Subjects (n=10) were bottlenose dolphins (Tursiops truncatus) which produce several structurally diverse vocalizations: e.g. burst-pulse sounds (bursts) and whistles. Our study revealed that bursts were responded to by bursts only, which occurred statusrelated within a small time window after stimulus end (latency: ~ 0.2 s). Responses to whistles were statusrelated too, but occurred with a different timing and more flexible and as either other whistles or directed locomotion. These findings document that the coordination mode of dolphin signals is related to both social and signal class-specific properties. As the time of signal transmission is strikingly short in an aquatic medium, we conclude that marine mammals perform a highly sophisticated form of signal processing.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal coordination in marine mammals: cues from the time domain of vocal interactions\",\"authors\":\"D. Todt, F. Veit\",\"doi\":\"10.1109/ISSPA.2005.1581066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine mammals are renowned for a precise coordination of social behaviors. To further elucidate these accomplishments, we investigated the time domain of vocal interactions and also relationships between the quality and the coordination mode of signals. Subjects (n=10) were bottlenose dolphins (Tursiops truncatus) which produce several structurally diverse vocalizations: e.g. burst-pulse sounds (bursts) and whistles. Our study revealed that bursts were responded to by bursts only, which occurred statusrelated within a small time window after stimulus end (latency: ~ 0.2 s). Responses to whistles were statusrelated too, but occurred with a different timing and more flexible and as either other whistles or directed locomotion. These findings document that the coordination mode of dolphin signals is related to both social and signal class-specific properties. As the time of signal transmission is strikingly short in an aquatic medium, we conclude that marine mammals perform a highly sophisticated form of signal processing.\",\"PeriodicalId\":385337,\"journal\":{\"name\":\"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPA.2005.1581066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1581066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signal coordination in marine mammals: cues from the time domain of vocal interactions
Marine mammals are renowned for a precise coordination of social behaviors. To further elucidate these accomplishments, we investigated the time domain of vocal interactions and also relationships between the quality and the coordination mode of signals. Subjects (n=10) were bottlenose dolphins (Tursiops truncatus) which produce several structurally diverse vocalizations: e.g. burst-pulse sounds (bursts) and whistles. Our study revealed that bursts were responded to by bursts only, which occurred statusrelated within a small time window after stimulus end (latency: ~ 0.2 s). Responses to whistles were statusrelated too, but occurred with a different timing and more flexible and as either other whistles or directed locomotion. These findings document that the coordination mode of dolphin signals is related to both social and signal class-specific properties. As the time of signal transmission is strikingly short in an aquatic medium, we conclude that marine mammals perform a highly sophisticated form of signal processing.