{"title":"矩阵谱的直接变换","authors":"A. Iskhakov, S. Skovpen","doi":"10.4236/ALAMT.2015.53011","DOIUrl":null,"url":null,"abstract":"A method is presented for calculating a matrix spectrum with a given set of eigenvalues. It can be used to build systems with different spectrums with the aim of choosing desired alternative. It enables a practical implementation of control algorithms without resorting to transformation of variables.","PeriodicalId":126811,"journal":{"name":"Journal of Progressive Research in Mathematics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Direct Transformation of a Matrix Spectrum\",\"authors\":\"A. Iskhakov, S. Skovpen\",\"doi\":\"10.4236/ALAMT.2015.53011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method is presented for calculating a matrix spectrum with a given set of eigenvalues. It can be used to build systems with different spectrums with the aim of choosing desired alternative. It enables a practical implementation of control algorithms without resorting to transformation of variables.\",\"PeriodicalId\":126811,\"journal\":{\"name\":\"Journal of Progressive Research in Mathematics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Progressive Research in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ALAMT.2015.53011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Progressive Research in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ALAMT.2015.53011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A method is presented for calculating a matrix spectrum with a given set of eigenvalues. It can be used to build systems with different spectrums with the aim of choosing desired alternative. It enables a practical implementation of control algorithms without resorting to transformation of variables.