可扩展的工作窃取

James Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha
{"title":"可扩展的工作窃取","authors":"James Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha","doi":"10.1145/1654059.1654113","DOIUrl":null,"url":null,"abstract":"Irregular and dynamic parallel applications pose significant challenges to achieving scalable performance on large-scale multicore clusters. These applications often require ongoing, dynamic load balancing in order to maintain efficiency. Scalable dynamic load balancing on large clusters is a challenging problem which can be addressed with distributed dynamic load balancing systems. Work stealing is a popular approach to distributed dynamic load balancing; however its performance on large-scale clusters is not well understood. Prior work on work stealing has largely focused on shared memory machines. In this work we investigate the design and scalability of work stealing on modern distributed memory systems. We demonstrate high efficiency and low overhead when scaling to 8,192 processors for three benchmark codes: a producer-consumer benchmark, the unbalanced tree search benchmark, and a multiresolution analysis kernel.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"287","resultStr":"{\"title\":\"Scalable work stealing\",\"authors\":\"James Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, J. Nieplocha\",\"doi\":\"10.1145/1654059.1654113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Irregular and dynamic parallel applications pose significant challenges to achieving scalable performance on large-scale multicore clusters. These applications often require ongoing, dynamic load balancing in order to maintain efficiency. Scalable dynamic load balancing on large clusters is a challenging problem which can be addressed with distributed dynamic load balancing systems. Work stealing is a popular approach to distributed dynamic load balancing; however its performance on large-scale clusters is not well understood. Prior work on work stealing has largely focused on shared memory machines. In this work we investigate the design and scalability of work stealing on modern distributed memory systems. We demonstrate high efficiency and low overhead when scaling to 8,192 processors for three benchmark codes: a producer-consumer benchmark, the unbalanced tree search benchmark, and a multiresolution analysis kernel.\",\"PeriodicalId\":371415,\"journal\":{\"name\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"287\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1654059.1654113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 287

摘要

不规则和动态并行应用程序对实现大规模多核集群上的可伸缩性能提出了重大挑战。为了保持效率,这些应用程序通常需要持续的动态负载平衡。大型集群上的可伸缩动态负载平衡是一个具有挑战性的问题,分布式动态负载平衡系统可以解决这个问题。窃取工作是一种流行的分布式动态负载平衡方法;然而,它在大规模集群上的性能还不是很清楚。之前关于工作窃取的研究主要集中在共享内存机器上。在这项工作中,我们研究了现代分布式存储系统上工作窃取的设计和可扩展性。当我们将三个基准代码扩展到8,192个处理器时,我们展示了高效率和低开销:生产者-消费者基准、不平衡树搜索基准和多分辨率分析内核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable work stealing
Irregular and dynamic parallel applications pose significant challenges to achieving scalable performance on large-scale multicore clusters. These applications often require ongoing, dynamic load balancing in order to maintain efficiency. Scalable dynamic load balancing on large clusters is a challenging problem which can be addressed with distributed dynamic load balancing systems. Work stealing is a popular approach to distributed dynamic load balancing; however its performance on large-scale clusters is not well understood. Prior work on work stealing has largely focused on shared memory machines. In this work we investigate the design and scalability of work stealing on modern distributed memory systems. We demonstrate high efficiency and low overhead when scaling to 8,192 processors for three benchmark codes: a producer-consumer benchmark, the unbalanced tree search benchmark, and a multiresolution analysis kernel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信