在存在任意变化的、无记忆的加性噪声的情况下对单个二值序列的通用预测

T. Weissman, N. Merhav
{"title":"在存在任意变化的、无记忆的加性噪声的情况下对单个二值序列的通用预测","authors":"T. Weissman, N. Merhav","doi":"10.1109/ISIT.2000.866387","DOIUrl":null,"url":null,"abstract":"The problem of predicting the next outcome of an individual binary sequence, based on past observations which are corrupted by arbitrarily varying memoryless additive noise, is considered. The goal of the predictor is to perform, for each individual sequence, \"almost\" as well as the best in a set of experts, where performance is evaluated using a general loss function. This setting is a generalization of the original problem of universal prediction of individual sequences relative to a set of experts.","PeriodicalId":108752,"journal":{"name":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Universal prediction of individual binary sequences in the presence of arbitrarily varying, memoryless additive noise\",\"authors\":\"T. Weissman, N. Merhav\",\"doi\":\"10.1109/ISIT.2000.866387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of predicting the next outcome of an individual binary sequence, based on past observations which are corrupted by arbitrarily varying memoryless additive noise, is considered. The goal of the predictor is to perform, for each individual sequence, \\\"almost\\\" as well as the best in a set of experts, where performance is evaluated using a general loss function. This setting is a generalization of the original problem of universal prediction of individual sequences relative to a set of experts.\",\"PeriodicalId\":108752,\"journal\":{\"name\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2000.866387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2000.866387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑了基于任意变化的无记忆加性噪声所破坏的过去观测值来预测单个二值序列的下一个结果的问题。预测器的目标是,对于每个单独的序列,“几乎”和一组专家中的最佳表现一样好,其中性能是使用一般损失函数来评估的。这种设置是对原始问题的一般化,即相对于一组专家对单个序列进行普遍预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal prediction of individual binary sequences in the presence of arbitrarily varying, memoryless additive noise
The problem of predicting the next outcome of an individual binary sequence, based on past observations which are corrupted by arbitrarily varying memoryless additive noise, is considered. The goal of the predictor is to perform, for each individual sequence, "almost" as well as the best in a set of experts, where performance is evaluated using a general loss function. This setting is a generalization of the original problem of universal prediction of individual sequences relative to a set of experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信