无分割动态场景去模糊

Tae Hyun Kim, Kyoung Mu Lee
{"title":"无分割动态场景去模糊","authors":"Tae Hyun Kim, Kyoung Mu Lee","doi":"10.1109/CVPR.2014.348","DOIUrl":null,"url":null,"abstract":"Most state-of-the-art dynamic scene deblurring methods based on accurate motion segmentation assume that motion blur is small or that the specific type of motion causing the blur is known. In this paper, we study a motion segmentation-free dynamic scene deblurring method, which is unlike other conventional methods. When the motion can be approximated to linear motion that is locally (pixel-wise) varying, we can handle various types of blur caused by camera shake, including out-of-plane motion, depth variation, radial distortion, and so on. Thus, we propose a new energy model simultaneously estimating motion flow and the latent image based on robust total variation (TV)-L1 model. This approach is necessary to handle abrupt changes in motion without segmentation. Furthermore, we address the problem of the traditional coarse-to-fine deblurring framework, which gives rise to artifacts when restoring small structures with distinct motion. We thus propose a novel kernel re-initialization method which reduces the error of motion flow propagated from a coarser level. Moreover, a highly effective convex optimization-based solution mitigating the computational difficulties of the TV-L1 model is established. Comparative experimental results on challenging real blurry images demonstrate the efficiency of the proposed method.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"719 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"Segmentation-Free Dynamic Scene Deblurring\",\"authors\":\"Tae Hyun Kim, Kyoung Mu Lee\",\"doi\":\"10.1109/CVPR.2014.348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most state-of-the-art dynamic scene deblurring methods based on accurate motion segmentation assume that motion blur is small or that the specific type of motion causing the blur is known. In this paper, we study a motion segmentation-free dynamic scene deblurring method, which is unlike other conventional methods. When the motion can be approximated to linear motion that is locally (pixel-wise) varying, we can handle various types of blur caused by camera shake, including out-of-plane motion, depth variation, radial distortion, and so on. Thus, we propose a new energy model simultaneously estimating motion flow and the latent image based on robust total variation (TV)-L1 model. This approach is necessary to handle abrupt changes in motion without segmentation. Furthermore, we address the problem of the traditional coarse-to-fine deblurring framework, which gives rise to artifacts when restoring small structures with distinct motion. We thus propose a novel kernel re-initialization method which reduces the error of motion flow propagated from a coarser level. Moreover, a highly effective convex optimization-based solution mitigating the computational difficulties of the TV-L1 model is established. Comparative experimental results on challenging real blurry images demonstrate the efficiency of the proposed method.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"719 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

摘要

大多数基于精确运动分割的最先进的动态场景去模糊方法假设运动模糊很小,或者已知引起模糊的特定运动类型。本文研究了一种不同于其他传统方法的无运动分割动态场景去模糊方法。当运动可以近似于局部(像素方向)变化的线性运动时,我们可以处理由相机抖动引起的各种类型的模糊,包括平面外运动,深度变化,径向扭曲等等。因此,我们提出了一种基于鲁棒总变差(TV)-L1模型同时估计运动流和潜在图像的新能量模型。这种方法对于处理无分割的运动突变是必要的。此外,我们还解决了传统的从粗到精的去模糊框架在恢复具有明显运动的小结构时产生伪影的问题。因此,我们提出了一种新的核重新初始化方法,减少了运动流从粗层次传播的误差。此外,建立了一种高效的基于凸优化的求解方法,减轻了TV-L1模型的计算困难。在具有挑战性的真实模糊图像上的对比实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation-Free Dynamic Scene Deblurring
Most state-of-the-art dynamic scene deblurring methods based on accurate motion segmentation assume that motion blur is small or that the specific type of motion causing the blur is known. In this paper, we study a motion segmentation-free dynamic scene deblurring method, which is unlike other conventional methods. When the motion can be approximated to linear motion that is locally (pixel-wise) varying, we can handle various types of blur caused by camera shake, including out-of-plane motion, depth variation, radial distortion, and so on. Thus, we propose a new energy model simultaneously estimating motion flow and the latent image based on robust total variation (TV)-L1 model. This approach is necessary to handle abrupt changes in motion without segmentation. Furthermore, we address the problem of the traditional coarse-to-fine deblurring framework, which gives rise to artifacts when restoring small structures with distinct motion. We thus propose a novel kernel re-initialization method which reduces the error of motion flow propagated from a coarser level. Moreover, a highly effective convex optimization-based solution mitigating the computational difficulties of the TV-L1 model is established. Comparative experimental results on challenging real blurry images demonstrate the efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信