Farah Singer, D. Deisenroth, David M. Hymas, M. Ohadi
{"title":"用于热管理应用的增材制造铜组件和复合结构","authors":"Farah Singer, D. Deisenroth, David M. Hymas, M. Ohadi","doi":"10.1109/ITHERM.2017.7992469","DOIUrl":null,"url":null,"abstract":"Recently additive manufacturing (AM) has brought significant innovation to thermal management devices and electronics. Among the most influential innovations are additively manufactured copper/copper alloy components and composites that benefit from the superior thermal, electrical and structural properties of the material. Cu is widely used in electronics, HVACR, radiators, charge air coolers, brazed plate heat exchangers, and oil cooling. Ongoing research is extensively studying, in parallel, Cu properties/characteristics and the different AM process parameters required to enhance the quality of the manufactured Cu components and to optimize their performance/applications. In this paper, we report various AM techniques and AM-based hybrid processes used to produce high-density Cu components. Selective heat exchanger/thermal management applications progress is also reviewed. It is then shown that additively manufactured, dense Cu can generate low mass structures and polymer/metal composites that promise to revolutionize developments in thermal management applications. Studies on the effect of the material properties such as the Cu particle morphology and size distribution are also reported. The major studies that report using Cu to address the challenges of electronics fabrication and cooling, which directly affect system-level performance and reliability, are also discussed. A novel AM process that facilitates microchannel cooling with Cu structures and new processes that allow embedding copper wires into thermoplastic dielectric structures are discussed to further emphasize the potentially transformative advances in additively manufactured electronics and thermal management devices using Cu/Cu alloy composites.","PeriodicalId":387542,"journal":{"name":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Additively manufactured copper components and composite structures for thermal management applications\",\"authors\":\"Farah Singer, D. Deisenroth, David M. Hymas, M. Ohadi\",\"doi\":\"10.1109/ITHERM.2017.7992469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently additive manufacturing (AM) has brought significant innovation to thermal management devices and electronics. Among the most influential innovations are additively manufactured copper/copper alloy components and composites that benefit from the superior thermal, electrical and structural properties of the material. Cu is widely used in electronics, HVACR, radiators, charge air coolers, brazed plate heat exchangers, and oil cooling. Ongoing research is extensively studying, in parallel, Cu properties/characteristics and the different AM process parameters required to enhance the quality of the manufactured Cu components and to optimize their performance/applications. In this paper, we report various AM techniques and AM-based hybrid processes used to produce high-density Cu components. Selective heat exchanger/thermal management applications progress is also reviewed. It is then shown that additively manufactured, dense Cu can generate low mass structures and polymer/metal composites that promise to revolutionize developments in thermal management applications. Studies on the effect of the material properties such as the Cu particle morphology and size distribution are also reported. The major studies that report using Cu to address the challenges of electronics fabrication and cooling, which directly affect system-level performance and reliability, are also discussed. A novel AM process that facilitates microchannel cooling with Cu structures and new processes that allow embedding copper wires into thermoplastic dielectric structures are discussed to further emphasize the potentially transformative advances in additively manufactured electronics and thermal management devices using Cu/Cu alloy composites.\",\"PeriodicalId\":387542,\"journal\":{\"name\":\"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2017.7992469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2017.7992469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Additively manufactured copper components and composite structures for thermal management applications
Recently additive manufacturing (AM) has brought significant innovation to thermal management devices and electronics. Among the most influential innovations are additively manufactured copper/copper alloy components and composites that benefit from the superior thermal, electrical and structural properties of the material. Cu is widely used in electronics, HVACR, radiators, charge air coolers, brazed plate heat exchangers, and oil cooling. Ongoing research is extensively studying, in parallel, Cu properties/characteristics and the different AM process parameters required to enhance the quality of the manufactured Cu components and to optimize their performance/applications. In this paper, we report various AM techniques and AM-based hybrid processes used to produce high-density Cu components. Selective heat exchanger/thermal management applications progress is also reviewed. It is then shown that additively manufactured, dense Cu can generate low mass structures and polymer/metal composites that promise to revolutionize developments in thermal management applications. Studies on the effect of the material properties such as the Cu particle morphology and size distribution are also reported. The major studies that report using Cu to address the challenges of electronics fabrication and cooling, which directly affect system-level performance and reliability, are also discussed. A novel AM process that facilitates microchannel cooling with Cu structures and new processes that allow embedding copper wires into thermoplastic dielectric structures are discussed to further emphasize the potentially transformative advances in additively manufactured electronics and thermal management devices using Cu/Cu alloy composites.