自动抄袭检测在学期论文

Takahisa Ota, Shigeru Masuyama
{"title":"自动抄袭检测在学期论文","authors":"Takahisa Ota, Shigeru Masuyama","doi":"10.1145/1667780.1667861","DOIUrl":null,"url":null,"abstract":"Recently, plagiarized term papers have become a serious problem. Therefore, we propose, in this paper, a method to detect plagiarized parts between two term papers. Our method is based on the Smith-Waterman algorithm that can detect similar parts between two molecules. Moreover, we experimented on our method using a document set consisting of actually submitted term papers and artificially-produced ones that plagiarized a paper written on the same theme. Experimental results show that our method attains higher accuracy than conventional ones.","PeriodicalId":103128,"journal":{"name":"Proceedings of the 3rd International Universal Communication Symposium","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Automatic plagiarism detection among term papers\",\"authors\":\"Takahisa Ota, Shigeru Masuyama\",\"doi\":\"10.1145/1667780.1667861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, plagiarized term papers have become a serious problem. Therefore, we propose, in this paper, a method to detect plagiarized parts between two term papers. Our method is based on the Smith-Waterman algorithm that can detect similar parts between two molecules. Moreover, we experimented on our method using a document set consisting of actually submitted term papers and artificially-produced ones that plagiarized a paper written on the same theme. Experimental results show that our method attains higher accuracy than conventional ones.\",\"PeriodicalId\":103128,\"journal\":{\"name\":\"Proceedings of the 3rd International Universal Communication Symposium\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Universal Communication Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1667780.1667861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Universal Communication Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1667780.1667861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

最近,抄袭学期论文已成为一个严重的问题。因此,我们在本文中提出了一种检测两篇学期论文之间抄袭部分的方法。我们的方法是基于史密斯-沃特曼算法,可以检测两个分子之间的相似部分。此外,我们用一个文档集对我们的方法进行了实验,该文档集由实际提交的学期论文和抄袭同一主题论文的人工生成的论文组成。实验结果表明,该方法比传统方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic plagiarism detection among term papers
Recently, plagiarized term papers have become a serious problem. Therefore, we propose, in this paper, a method to detect plagiarized parts between two term papers. Our method is based on the Smith-Waterman algorithm that can detect similar parts between two molecules. Moreover, we experimented on our method using a document set consisting of actually submitted term papers and artificially-produced ones that plagiarized a paper written on the same theme. Experimental results show that our method attains higher accuracy than conventional ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信