{"title":"高效的运行时定量验证,使用缓存、前瞻和近乎最优的重新配置","authors":"Simos Gerasimou, R. Calinescu, Alec Banks","doi":"10.1145/2593929.2593932","DOIUrl":null,"url":null,"abstract":"Self-adaptive systems used in safety-critical and business-critical applications must continue to comply with strict non-functional requirements while evolving in order to adapt to changing workloads, environments, and goals. Runtime quantitative verification (RQV) has been proposed as an effective means of enhancing self-adaptive systems with this capability. However, RQV frequently fails to provide the fast response times and low computation overheads required by real-world self-adaptive systems. In this paper, we investigate how three techniques, namely caching, lookahead and nearly-optimal reconfiguration, and combinations thereof, can help address this limitation. Extensive experiments in a case study involving the RQV-driven self-adaptation of an unmanned underwater vehicle indicate that these techniques can lead to significant reductions in RQV response times and computation overheads.","PeriodicalId":168314,"journal":{"name":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Efficient runtime quantitative verification using caching, lookahead, and nearly-optimal reconfiguration\",\"authors\":\"Simos Gerasimou, R. Calinescu, Alec Banks\",\"doi\":\"10.1145/2593929.2593932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-adaptive systems used in safety-critical and business-critical applications must continue to comply with strict non-functional requirements while evolving in order to adapt to changing workloads, environments, and goals. Runtime quantitative verification (RQV) has been proposed as an effective means of enhancing self-adaptive systems with this capability. However, RQV frequently fails to provide the fast response times and low computation overheads required by real-world self-adaptive systems. In this paper, we investigate how three techniques, namely caching, lookahead and nearly-optimal reconfiguration, and combinations thereof, can help address this limitation. Extensive experiments in a case study involving the RQV-driven self-adaptation of an unmanned underwater vehicle indicate that these techniques can lead to significant reductions in RQV response times and computation overheads.\",\"PeriodicalId\":168314,\"journal\":{\"name\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Software Engineering for Adaptive and Self-Managing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2593929.2593932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Software Engineering for Adaptive and Self-Managing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593929.2593932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient runtime quantitative verification using caching, lookahead, and nearly-optimal reconfiguration
Self-adaptive systems used in safety-critical and business-critical applications must continue to comply with strict non-functional requirements while evolving in order to adapt to changing workloads, environments, and goals. Runtime quantitative verification (RQV) has been proposed as an effective means of enhancing self-adaptive systems with this capability. However, RQV frequently fails to provide the fast response times and low computation overheads required by real-world self-adaptive systems. In this paper, we investigate how three techniques, namely caching, lookahead and nearly-optimal reconfiguration, and combinations thereof, can help address this limitation. Extensive experiments in a case study involving the RQV-driven self-adaptation of an unmanned underwater vehicle indicate that these techniques can lead to significant reductions in RQV response times and computation overheads.