微博用户影响力分析

Yong Zhang, J. Mo, Tingting He
{"title":"微博用户影响力分析","authors":"Yong Zhang, J. Mo, Tingting He","doi":"10.1109/CCIS.2012.6664630","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate features and propose a method to identify influential users on Sina-Weibo, one of the most famous micro-blogging services in China. We first investigate features such as users' follower number distribution, relation between Weibo number and follower number and analysis of user interaction. Due to the existing methods are not very comprehensive in measuring the influence of user, we propose a new model. In which, we take the three basic actions: following, retweeting and commenting into consideration. Based on the weight and networks of them, we construct a weighted network, then employ Weighted PageRank and Hypertext Induced Topic Selection algorithm to calculate user influence. Compared with other two methods, the experiment results suggest that our model offers a new way to identify influential user, and it is more comprehensive and stable than the other two.","PeriodicalId":392558,"journal":{"name":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","volume":"344 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"User influence analysis on micro blog\",\"authors\":\"Yong Zhang, J. Mo, Tingting He\",\"doi\":\"10.1109/CCIS.2012.6664630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate features and propose a method to identify influential users on Sina-Weibo, one of the most famous micro-blogging services in China. We first investigate features such as users' follower number distribution, relation between Weibo number and follower number and analysis of user interaction. Due to the existing methods are not very comprehensive in measuring the influence of user, we propose a new model. In which, we take the three basic actions: following, retweeting and commenting into consideration. Based on the weight and networks of them, we construct a weighted network, then employ Weighted PageRank and Hypertext Induced Topic Selection algorithm to calculate user influence. Compared with other two methods, the experiment results suggest that our model offers a new way to identify influential user, and it is more comprehensive and stable than the other two.\",\"PeriodicalId\":392558,\"journal\":{\"name\":\"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems\",\"volume\":\"344 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS.2012.6664630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS.2012.6664630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了中国最著名的微博服务之一——新浪微博的特征,并提出了一种识别有影响力用户的方法。我们首先研究了用户关注数分布、微博数量与关注数之间的关系以及用户交互分析等特征。由于现有的方法在衡量用户影响方面不够全面,我们提出了一个新的模型。其中,我们考虑了关注、转发和评论这三种基本行为。基于它们的权重和网络,构建一个加权网络,然后采用加权PageRank和超文本诱导主题选择算法计算用户影响力。实验结果表明,与其他两种方法相比,我们的模型为识别有影响力的用户提供了一种新的方法,并且比其他两种方法更加全面和稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User influence analysis on micro blog
In this paper, we investigate features and propose a method to identify influential users on Sina-Weibo, one of the most famous micro-blogging services in China. We first investigate features such as users' follower number distribution, relation between Weibo number and follower number and analysis of user interaction. Due to the existing methods are not very comprehensive in measuring the influence of user, we propose a new model. In which, we take the three basic actions: following, retweeting and commenting into consideration. Based on the weight and networks of them, we construct a weighted network, then employ Weighted PageRank and Hypertext Induced Topic Selection algorithm to calculate user influence. Compared with other two methods, the experiment results suggest that our model offers a new way to identify influential user, and it is more comprehensive and stable than the other two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信