基于路径信息的城市交通拥堵预测

D. Pescaru
{"title":"基于路径信息的城市交通拥堵预测","authors":"D. Pescaru","doi":"10.1109/SACI.2013.6608951","DOIUrl":null,"url":null,"abstract":"Traffic congestion represents an important problem in crowded urban areas. It leads to travel delays, increased fuel consumption and higher level of pollution. This paper proposes a technique for congestion prediction in urban traffic. It uses event based routes selection and relies on information collected by a sensor network. Simulation experiments with more than 50 traffic patterns over eight crowded intersections demonstrate promising results.","PeriodicalId":304729,"journal":{"name":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Urban traffic congestion prediction based on routes information\",\"authors\":\"D. Pescaru\",\"doi\":\"10.1109/SACI.2013.6608951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic congestion represents an important problem in crowded urban areas. It leads to travel delays, increased fuel consumption and higher level of pollution. This paper proposes a technique for congestion prediction in urban traffic. It uses event based routes selection and relies on information collected by a sensor network. Simulation experiments with more than 50 traffic patterns over eight crowded intersections demonstrate promising results.\",\"PeriodicalId\":304729,\"journal\":{\"name\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SACI.2013.6608951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI.2013.6608951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

交通拥堵是拥挤的城市地区的一个重要问题。它导致旅行延误、燃料消耗增加和污染加剧。提出了一种城市交通拥堵预测技术。它使用基于事件的路由选择,并依赖于传感器网络收集的信息。在8个拥挤的十字路口进行了50多种交通模式的模拟实验,结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban traffic congestion prediction based on routes information
Traffic congestion represents an important problem in crowded urban areas. It leads to travel delays, increased fuel consumption and higher level of pollution. This paper proposes a technique for congestion prediction in urban traffic. It uses event based routes selection and relies on information collected by a sensor network. Simulation experiments with more than 50 traffic patterns over eight crowded intersections demonstrate promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信