用双双和四双算法在图形处理单元上加速多项式同伦延拓

J. Verschelde, Xiangcheng Yu
{"title":"用双双和四双算法在图形处理单元上加速多项式同伦延拓","authors":"J. Verschelde, Xiangcheng Yu","doi":"10.1145/2790282.2790294","DOIUrl":null,"url":null,"abstract":"Numerical continuation methods track a solution path defined by a homotopy. The systems we consider are defined by polynomials in several variables with complex coefficients. For larger dimensions and degrees, the numerical conditioning worsens and hardware double precision becomes often insufficient to reach the end of the solution path. With double double and quad double arithmetic, we can solve larger problems that we could not solve with hardware double arithmetic, but at a higher computational cost. This cost overhead can be compensated by acceleration on a Graphics Processing Unit (GPU). We describe our implementation and report on computational results on benchmark polynomial systems.","PeriodicalId":384227,"journal":{"name":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Accelerating polynomial homotopy continuation on a graphics processing unit with double double and quad double arithmetic\",\"authors\":\"J. Verschelde, Xiangcheng Yu\",\"doi\":\"10.1145/2790282.2790294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical continuation methods track a solution path defined by a homotopy. The systems we consider are defined by polynomials in several variables with complex coefficients. For larger dimensions and degrees, the numerical conditioning worsens and hardware double precision becomes often insufficient to reach the end of the solution path. With double double and quad double arithmetic, we can solve larger problems that we could not solve with hardware double arithmetic, but at a higher computational cost. This cost overhead can be compensated by acceleration on a Graphics Processing Unit (GPU). We describe our implementation and report on computational results on benchmark polynomial systems.\",\"PeriodicalId\":384227,\"journal\":{\"name\":\"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2790282.2790294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2790282.2790294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

数值延拓方法跟踪由同伦定义的解路径。我们考虑的系统是由复数系数的几个变量的多项式定义的。对于较大的尺寸和度,数值条件恶化,硬件双精度往往不足以达到解路径的末端。使用双双和四双算法,我们可以解决硬件双算法无法解决的更大问题,但计算成本更高。这种开销可以通过图形处理单元(GPU)的加速来补偿。我们描述了我们的实现,并报告了基准多项式系统的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating polynomial homotopy continuation on a graphics processing unit with double double and quad double arithmetic
Numerical continuation methods track a solution path defined by a homotopy. The systems we consider are defined by polynomials in several variables with complex coefficients. For larger dimensions and degrees, the numerical conditioning worsens and hardware double precision becomes often insufficient to reach the end of the solution path. With double double and quad double arithmetic, we can solve larger problems that we could not solve with hardware double arithmetic, but at a higher computational cost. This cost overhead can be compensated by acceleration on a Graphics Processing Unit (GPU). We describe our implementation and report on computational results on benchmark polynomial systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信