{"title":"利用GTA热源研制功能梯度Cu-Sn-Ni合金","authors":"C. Paul, R. Sellamuthu","doi":"10.5772/INTECHOPEN.86315","DOIUrl":null,"url":null,"abstract":"The impact of nickel content on surface hardness, microstructure and wear properties of surface alloyed Cu-10Sn bronze composite was examined in this chapter. Gas Tungsten Arc (GTA) was utilized as the heat source for the surface alloying/ modification process. The surface modification process was carried out on bronze samples coated with various Nickel coating thicknesses. Vickers hardness tester was used to measure the surface hardness as well as the hardness along the depth of the modified layer and wear rate was measured using a pin-on-disc tribometer. The Ni concentration profiling was carried out using EDAX. Surface modification process resulted in the formation of a layered functionally graded bronze alloy. The average grain size was found to reduce upon surface modification process. Ni addition was observed to increase the hardness and reduce wear rate for the modified samples.","PeriodicalId":127147,"journal":{"name":"Mechanics of Functionally Graded Materials and Structures","volume":"760 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Functionally Gradient Cu-Sn-Ni Alloy Using GTA Heat Source\",\"authors\":\"C. Paul, R. Sellamuthu\",\"doi\":\"10.5772/INTECHOPEN.86315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of nickel content on surface hardness, microstructure and wear properties of surface alloyed Cu-10Sn bronze composite was examined in this chapter. Gas Tungsten Arc (GTA) was utilized as the heat source for the surface alloying/ modification process. The surface modification process was carried out on bronze samples coated with various Nickel coating thicknesses. Vickers hardness tester was used to measure the surface hardness as well as the hardness along the depth of the modified layer and wear rate was measured using a pin-on-disc tribometer. The Ni concentration profiling was carried out using EDAX. Surface modification process resulted in the formation of a layered functionally graded bronze alloy. The average grain size was found to reduce upon surface modification process. Ni addition was observed to increase the hardness and reduce wear rate for the modified samples.\",\"PeriodicalId\":127147,\"journal\":{\"name\":\"Mechanics of Functionally Graded Materials and Structures\",\"volume\":\"760 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Functionally Graded Materials and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.86315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Functionally Graded Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of Functionally Gradient Cu-Sn-Ni Alloy Using GTA Heat Source
The impact of nickel content on surface hardness, microstructure and wear properties of surface alloyed Cu-10Sn bronze composite was examined in this chapter. Gas Tungsten Arc (GTA) was utilized as the heat source for the surface alloying/ modification process. The surface modification process was carried out on bronze samples coated with various Nickel coating thicknesses. Vickers hardness tester was used to measure the surface hardness as well as the hardness along the depth of the modified layer and wear rate was measured using a pin-on-disc tribometer. The Ni concentration profiling was carried out using EDAX. Surface modification process resulted in the formation of a layered functionally graded bronze alloy. The average grain size was found to reduce upon surface modification process. Ni addition was observed to increase the hardness and reduce wear rate for the modified samples.