{"title":"支持成本效益高的产量诊断服务的贝叶斯排序方案","authors":"Chih-Min Fan, Yun-Pei Lu","doi":"10.1109/COASE.2009.5234101","DOIUrl":null,"url":null,"abstract":"A Bayesian Ranking Scheme is proposed for the reliable diagnosis of various yield-loss factors induced in semiconductor manufacturing. The aim is to cope with three problems: (FICV) false identification due to confounding variables, (FISV) false identification due to suppressor variables, and (MISC) miss identification due to severe multicollinearity. The proposed scheme reuses both the results from knowledge-based and data-driven inference tools as input data, where the former resembles expert's knowledge on diagnosing pre-known yield-loss factors while the latter serves for exploring new yield-loss factors. Two successive stages with specific designs for yield diagnosis services are addressed: Bayesian Variable Selection for reliable model construction and Relative Importance Assessment for facilitating interpretations on model parameters. A simulation example is designed to demonstrate the usefulness of Bayesian Ranking Scheme on solving FICV, FISV and MISC problems.","PeriodicalId":386046,"journal":{"name":"2009 IEEE International Conference on Automation Science and Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian Ranking Scheme for supporting cost-effective yield diagnosis services\",\"authors\":\"Chih-Min Fan, Yun-Pei Lu\",\"doi\":\"10.1109/COASE.2009.5234101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Bayesian Ranking Scheme is proposed for the reliable diagnosis of various yield-loss factors induced in semiconductor manufacturing. The aim is to cope with three problems: (FICV) false identification due to confounding variables, (FISV) false identification due to suppressor variables, and (MISC) miss identification due to severe multicollinearity. The proposed scheme reuses both the results from knowledge-based and data-driven inference tools as input data, where the former resembles expert's knowledge on diagnosing pre-known yield-loss factors while the latter serves for exploring new yield-loss factors. Two successive stages with specific designs for yield diagnosis services are addressed: Bayesian Variable Selection for reliable model construction and Relative Importance Assessment for facilitating interpretations on model parameters. A simulation example is designed to demonstrate the usefulness of Bayesian Ranking Scheme on solving FICV, FISV and MISC problems.\",\"PeriodicalId\":386046,\"journal\":{\"name\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Automation Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2009.5234101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Automation Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2009.5234101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Bayesian Ranking Scheme for supporting cost-effective yield diagnosis services
A Bayesian Ranking Scheme is proposed for the reliable diagnosis of various yield-loss factors induced in semiconductor manufacturing. The aim is to cope with three problems: (FICV) false identification due to confounding variables, (FISV) false identification due to suppressor variables, and (MISC) miss identification due to severe multicollinearity. The proposed scheme reuses both the results from knowledge-based and data-driven inference tools as input data, where the former resembles expert's knowledge on diagnosing pre-known yield-loss factors while the latter serves for exploring new yield-loss factors. Two successive stages with specific designs for yield diagnosis services are addressed: Bayesian Variable Selection for reliable model construction and Relative Importance Assessment for facilitating interpretations on model parameters. A simulation example is designed to demonstrate the usefulness of Bayesian Ranking Scheme on solving FICV, FISV and MISC problems.