{"title":"二氧化钛(TiO2)和凝胶聚合物太阳能电池","authors":"Bahodir Bakhramov, Muattar Tokhirjonova","doi":"10.21744/ijpm.v6n1.2151","DOIUrl":null,"url":null,"abstract":"This research focuses on the study of semiconductor-based solar cells utilizing titanium dioxide (TiO2) and gel-polymer electrolytes. The technology for preparing the electrolytes used in these solar cells has been developed, encompassing both liquid and gel polymer electrolyte compositions. The electrochemical impedance method is employed to determine important parameters such as diffusion coefficient, mobility, and charge carrier concentration in both liquid and gel-polymer electrolytes. Experimental results are compared with theoretical calculations utilizing the electrochemical impedance spectroscopy graph. Moreover, the photon-to-current conversion efficiency of the semiconductor-based solar cells is determined using the Incident Photon to Current Conversion Efficiency (IPCE) method, covering a wavelength range of 300 nm to 900 nm.","PeriodicalId":163260,"journal":{"name":"International journal of physics & mathematics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Titanium dioxide (TiO2) and gel-polymer solar cells\",\"authors\":\"Bahodir Bakhramov, Muattar Tokhirjonova\",\"doi\":\"10.21744/ijpm.v6n1.2151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on the study of semiconductor-based solar cells utilizing titanium dioxide (TiO2) and gel-polymer electrolytes. The technology for preparing the electrolytes used in these solar cells has been developed, encompassing both liquid and gel polymer electrolyte compositions. The electrochemical impedance method is employed to determine important parameters such as diffusion coefficient, mobility, and charge carrier concentration in both liquid and gel-polymer electrolytes. Experimental results are compared with theoretical calculations utilizing the electrochemical impedance spectroscopy graph. Moreover, the photon-to-current conversion efficiency of the semiconductor-based solar cells is determined using the Incident Photon to Current Conversion Efficiency (IPCE) method, covering a wavelength range of 300 nm to 900 nm.\",\"PeriodicalId\":163260,\"journal\":{\"name\":\"International journal of physics & mathematics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of physics & mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21744/ijpm.v6n1.2151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of physics & mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21744/ijpm.v6n1.2151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Titanium dioxide (TiO2) and gel-polymer solar cells
This research focuses on the study of semiconductor-based solar cells utilizing titanium dioxide (TiO2) and gel-polymer electrolytes. The technology for preparing the electrolytes used in these solar cells has been developed, encompassing both liquid and gel polymer electrolyte compositions. The electrochemical impedance method is employed to determine important parameters such as diffusion coefficient, mobility, and charge carrier concentration in both liquid and gel-polymer electrolytes. Experimental results are compared with theoretical calculations utilizing the electrochemical impedance spectroscopy graph. Moreover, the photon-to-current conversion efficiency of the semiconductor-based solar cells is determined using the Incident Photon to Current Conversion Efficiency (IPCE) method, covering a wavelength range of 300 nm to 900 nm.