旅行商问题的最大最小蚂蚁系统与局部搜索

T. Stützle, H. Hoos
{"title":"旅行商问题的最大最小蚂蚁系统与局部搜索","authors":"T. Stützle, H. Hoos","doi":"10.1109/ICEC.1997.592327","DOIUrl":null,"url":null,"abstract":"Ant System is a general purpose algorithm inspired by the study of the behavior of ant colonies. It is based on a cooperative search paradigm that is applicable to the solution of combinatorial optimization problems. We introduce MAX-MIN Ant System, an improved version of basic Ant System, and report our results for its application to symmetric and asymmetric instances of the well known traveling salesman problem. We show how MAX-MIN Ant System can be significantly improved, extending it with local search heuristics. Our results clearly show that MAX-MIN Ant System has the property of effectively guiding the local search heuristics towards promising regions of the search space by generating good initial tours.","PeriodicalId":167852,"journal":{"name":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"930","resultStr":"{\"title\":\"MAX-MIN Ant System and local search for the traveling salesman problem\",\"authors\":\"T. Stützle, H. Hoos\",\"doi\":\"10.1109/ICEC.1997.592327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ant System is a general purpose algorithm inspired by the study of the behavior of ant colonies. It is based on a cooperative search paradigm that is applicable to the solution of combinatorial optimization problems. We introduce MAX-MIN Ant System, an improved version of basic Ant System, and report our results for its application to symmetric and asymmetric instances of the well known traveling salesman problem. We show how MAX-MIN Ant System can be significantly improved, extending it with local search heuristics. Our results clearly show that MAX-MIN Ant System has the property of effectively guiding the local search heuristics towards promising regions of the search space by generating good initial tours.\",\"PeriodicalId\":167852,\"journal\":{\"name\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"930\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1997.592327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1997.592327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 930

摘要

蚂蚁系统是一种通用算法,灵感来自于对蚁群行为的研究。它基于一种适用于组合优化问题求解的协同搜索范式。我们介绍了基本蚂蚁系统的改进版本MAX-MIN蚂蚁系统,并报告了我们将其应用于著名的旅行推销员问题的对称和非对称实例的结果。我们展示了如何显著改进MAX-MIN蚂蚁系统,用局部搜索启发式扩展它。我们的结果清楚地表明,MAX-MIN蚂蚁系统具有通过生成良好的初始游,有效地将局部搜索启发式引导到搜索空间的有希望的区域的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MAX-MIN Ant System and local search for the traveling salesman problem
Ant System is a general purpose algorithm inspired by the study of the behavior of ant colonies. It is based on a cooperative search paradigm that is applicable to the solution of combinatorial optimization problems. We introduce MAX-MIN Ant System, an improved version of basic Ant System, and report our results for its application to symmetric and asymmetric instances of the well known traveling salesman problem. We show how MAX-MIN Ant System can be significantly improved, extending it with local search heuristics. Our results clearly show that MAX-MIN Ant System has the property of effectively guiding the local search heuristics towards promising regions of the search space by generating good initial tours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信