{"title":"广义赫胥黎方程的一种新的数值格式","authors":"B. Inan","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.16.105","DOIUrl":null,"url":null,"abstract":"In this paper, an implicit exponential finite difference method is applied to compute the numerical solutions of the nonlinear generalized Huxley equation. The numerical solutions obtained by the present method are compared with the exact solutions and obtained by other methods to show the efficiency of the method. The comparisons showed that proposed scheme is reliable, precise and convenient alternative method for solution of the generalized Huxley equation.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A New Numerical Scheme for the Generalized Huxley Equation\",\"authors\":\"B. Inan\",\"doi\":\"10.18052/WWW.SCIPRESS.COM/BMSA.16.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an implicit exponential finite difference method is applied to compute the numerical solutions of the nonlinear generalized Huxley equation. The numerical solutions obtained by the present method are compared with the exact solutions and obtained by other methods to show the efficiency of the method. The comparisons showed that proposed scheme is reliable, precise and convenient alternative method for solution of the generalized Huxley equation.\",\"PeriodicalId\":252632,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.16.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.16.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Numerical Scheme for the Generalized Huxley Equation
In this paper, an implicit exponential finite difference method is applied to compute the numerical solutions of the nonlinear generalized Huxley equation. The numerical solutions obtained by the present method are compared with the exact solutions and obtained by other methods to show the efficiency of the method. The comparisons showed that proposed scheme is reliable, precise and convenient alternative method for solution of the generalized Huxley equation.