遗传规划与最近邻分类的杂交

Harith Al-Sahaf, A. Song, Mengjie Zhang
{"title":"遗传规划与最近邻分类的杂交","authors":"Harith Al-Sahaf, A. Song, Mengjie Zhang","doi":"10.1109/CEC.2013.6557889","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel hybrid classification method which is based on two distinct approaches, namely Genetic Programming (GP) and Nearest Neighbour (kNN). The method relies on a memory list which contains some correctly labelled instances and is formed by classifiers evolved by GP. The class label of a new instance will be determined by combining its most similar instances in the memory list and the output of GP classifier on this instance. The results show that this proposed method can outperform conventional GP-based classification approach. Compared with conventional classification methods such as Naive Bayes, SVM, Decision Trees, and conventional kNN, this method can also achieve better or comparable accuracies on a set of binary problems. The evaluation cost of this hybrid method is much lower than that of conventional kNN.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hybridisation of Genetic Programming and Nearest Neighbour for classification\",\"authors\":\"Harith Al-Sahaf, A. Song, Mengjie Zhang\",\"doi\":\"10.1109/CEC.2013.6557889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel hybrid classification method which is based on two distinct approaches, namely Genetic Programming (GP) and Nearest Neighbour (kNN). The method relies on a memory list which contains some correctly labelled instances and is formed by classifiers evolved by GP. The class label of a new instance will be determined by combining its most similar instances in the memory list and the output of GP classifier on this instance. The results show that this proposed method can outperform conventional GP-based classification approach. Compared with conventional classification methods such as Naive Bayes, SVM, Decision Trees, and conventional kNN, this method can also achieve better or comparable accuracies on a set of binary problems. The evaluation cost of this hybrid method is much lower than that of conventional kNN.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于遗传规划(GP)和最近邻(kNN)两种不同方法的混合分类方法。该方法依赖于一个包含正确标记实例的记忆列表,该列表由GP进化的分类器形成。新实例的类标号将通过结合内存列表中最相似的实例和GP分类器在该实例上的输出来确定。结果表明,该方法优于传统的基于gp的分类方法。与传统的分类方法(如朴素贝叶斯、支持向量机、决策树和传统的kNN)相比,该方法在一组二值问题上也可以达到更好或相当的精度。这种混合方法的评估成本比传统的kNN方法低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybridisation of Genetic Programming and Nearest Neighbour for classification
In this paper, we propose a novel hybrid classification method which is based on two distinct approaches, namely Genetic Programming (GP) and Nearest Neighbour (kNN). The method relies on a memory list which contains some correctly labelled instances and is formed by classifiers evolved by GP. The class label of a new instance will be determined by combining its most similar instances in the memory list and the output of GP classifier on this instance. The results show that this proposed method can outperform conventional GP-based classification approach. Compared with conventional classification methods such as Naive Bayes, SVM, Decision Trees, and conventional kNN, this method can also achieve better or comparable accuracies on a set of binary problems. The evaluation cost of this hybrid method is much lower than that of conventional kNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信