基于正态分布的改进遗传算法求解旅行商问题

Ying Gao, Jianwei Ye
{"title":"基于正态分布的改进遗传算法求解旅行商问题","authors":"Ying Gao, Jianwei Ye","doi":"10.1109/ICVRIS.2018.00094","DOIUrl":null,"url":null,"abstract":"Traditional genetic algorithm uses ordinary random number as the selection condition of exchange and variation of genetic factors.Inspired by the weed algotithm, the normal distribution sequence is used as a random number library. The location of exchange and variation of genetic factors is read from this library every time and applied to solve the traveling salesman problem.Matlab test shows that this method can improve convergence speed and improve convergence accuracy.","PeriodicalId":152317,"journal":{"name":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Improved Genetic Algorithm Based on Normal Distribution for Solving the Traveling Salesman Problem\",\"authors\":\"Ying Gao, Jianwei Ye\",\"doi\":\"10.1109/ICVRIS.2018.00094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional genetic algorithm uses ordinary random number as the selection condition of exchange and variation of genetic factors.Inspired by the weed algotithm, the normal distribution sequence is used as a random number library. The location of exchange and variation of genetic factors is read from this library every time and applied to solve the traveling salesman problem.Matlab test shows that this method can improve convergence speed and improve convergence accuracy.\",\"PeriodicalId\":152317,\"journal\":{\"name\":\"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS.2018.00094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS.2018.00094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统遗传算法采用普通随机数作为遗传因子交换和变异的选择条件。受weed算法的启发,采用正态分布序列作为随机数库。每次从该库中读取遗传因子的交换和变异位置,并将其应用于求解旅行商问题。Matlab测试表明,该方法可以提高收敛速度,提高收敛精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Genetic Algorithm Based on Normal Distribution for Solving the Traveling Salesman Problem
Traditional genetic algorithm uses ordinary random number as the selection condition of exchange and variation of genetic factors.Inspired by the weed algotithm, the normal distribution sequence is used as a random number library. The location of exchange and variation of genetic factors is read from this library every time and applied to solve the traveling salesman problem.Matlab test shows that this method can improve convergence speed and improve convergence accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信