一种用于GMTI跟踪的变结构多模型粒子滤波器

M. Arulampalam, Neil Gordon, M. R. Orton, Branko Ristic
{"title":"一种用于GMTI跟踪的变结构多模型粒子滤波器","authors":"M. Arulampalam, Neil Gordon, M. R. Orton, Branko Ristic","doi":"10.1109/ICIF.2002.1020911","DOIUrl":null,"url":null,"abstract":"The problem of tracking ground targets with GMTI sensors has received some attention in the recent past. In addition to standard GMTI sensor measurements, one is interested in using non-standard information such as road maps, and terrain-related visibility conditions to enhance tracker performance. The conventional approach to this problem has been to use the variable structure IMM (VS-IMM), which uses the concept of directional process noise to model motion along particular roads. In this paper, we present a particle filter based approach to this problem which we call variable structure multiple model particle filter (VS-MMPF). Simulation results show that the performance of the VS-MMPF is much superior to that of VS-IMM.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"A variable structure multiple model particle filter for GMTI tracking\",\"authors\":\"M. Arulampalam, Neil Gordon, M. R. Orton, Branko Ristic\",\"doi\":\"10.1109/ICIF.2002.1020911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of tracking ground targets with GMTI sensors has received some attention in the recent past. In addition to standard GMTI sensor measurements, one is interested in using non-standard information such as road maps, and terrain-related visibility conditions to enhance tracker performance. The conventional approach to this problem has been to use the variable structure IMM (VS-IMM), which uses the concept of directional process noise to model motion along particular roads. In this paper, we present a particle filter based approach to this problem which we call variable structure multiple model particle filter (VS-MMPF). Simulation results show that the performance of the VS-MMPF is much superior to that of VS-IMM.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1020911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

近年来,利用GMTI传感器跟踪地面目标的问题受到了一些关注。除了标准的GMTI传感器测量外,人们还对使用非标准信息(如道路地图和与地形相关的能见度条件)来增强跟踪器的性能感兴趣。解决这一问题的传统方法是使用变结构IMM (VS-IMM),它使用方向过程噪声的概念来模拟沿着特定道路的运动。本文提出了一种基于粒子滤波的方法来解决这一问题,我们称之为变结构多模型粒子滤波(VS-MMPF)。仿真结果表明,VS-MMPF的性能明显优于VS-IMM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A variable structure multiple model particle filter for GMTI tracking
The problem of tracking ground targets with GMTI sensors has received some attention in the recent past. In addition to standard GMTI sensor measurements, one is interested in using non-standard information such as road maps, and terrain-related visibility conditions to enhance tracker performance. The conventional approach to this problem has been to use the variable structure IMM (VS-IMM), which uses the concept of directional process noise to model motion along particular roads. In this paper, we present a particle filter based approach to this problem which we call variable structure multiple model particle filter (VS-MMPF). Simulation results show that the performance of the VS-MMPF is much superior to that of VS-IMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信