面向用户的轨迹相似度搜索

Haibo Wang, Kuien Liu
{"title":"面向用户的轨迹相似度搜索","authors":"Haibo Wang, Kuien Liu","doi":"10.1145/2346496.2346513","DOIUrl":null,"url":null,"abstract":"Trajectory similarity search studies the problem of finding a trajectory from the database such the found trajectory most similar to the query trajectory. Past research mainly focused on two aspects: shape similarity search and semantic similarity search, leaving personalized similarity search untouched. In this paper, we propose a new query which takes user's preference into consideration to provide personalized searching. We define a new data model for this query and identify the efficiency issue as the key challenge: given a user specified trajectory, how to efficiently retrieve the most similar trajectory from the database. By taking advantage of the spatial localities, we develop a two-phase algorithm to tame this challenge. Two optimized strategies are also developed to speed up the query process. Both the theoretical analysis and the experiments demonstrate the high efficiency of the proposed method.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"User oriented trajectory similarity search\",\"authors\":\"Haibo Wang, Kuien Liu\",\"doi\":\"10.1145/2346496.2346513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory similarity search studies the problem of finding a trajectory from the database such the found trajectory most similar to the query trajectory. Past research mainly focused on two aspects: shape similarity search and semantic similarity search, leaving personalized similarity search untouched. In this paper, we propose a new query which takes user's preference into consideration to provide personalized searching. We define a new data model for this query and identify the efficiency issue as the key challenge: given a user specified trajectory, how to efficiently retrieve the most similar trajectory from the database. By taking advantage of the spatial localities, we develop a two-phase algorithm to tame this challenge. Two optimized strategies are also developed to speed up the query process. Both the theoretical analysis and the experiments demonstrate the high efficiency of the proposed method.\",\"PeriodicalId\":350527,\"journal\":{\"name\":\"UrbComp '12\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UrbComp '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2346496.2346513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2346496.2346513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

轨迹相似搜索研究的是从数据库中找出与查询轨迹最相似的轨迹的问题。以往的研究主要集中在形状相似搜索和语义相似搜索两个方面,个性化相似搜索尚未触及。在本文中,我们提出了一种考虑用户偏好的新查询,以提供个性化搜索。我们为这个查询定义了一个新的数据模型,并将效率问题确定为关键挑战:给定用户指定的轨迹,如何有效地从数据库中检索最相似的轨迹。通过利用空间定位,我们开发了一种两阶段算法来克服这一挑战。本文还提出了两种优化策略来加快查询过程。理论分析和实验结果均表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User oriented trajectory similarity search
Trajectory similarity search studies the problem of finding a trajectory from the database such the found trajectory most similar to the query trajectory. Past research mainly focused on two aspects: shape similarity search and semantic similarity search, leaving personalized similarity search untouched. In this paper, we propose a new query which takes user's preference into consideration to provide personalized searching. We define a new data model for this query and identify the efficiency issue as the key challenge: given a user specified trajectory, how to efficiently retrieve the most similar trajectory from the database. By taking advantage of the spatial localities, we develop a two-phase algorithm to tame this challenge. Two optimized strategies are also developed to speed up the query process. Both the theoretical analysis and the experiments demonstrate the high efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信