{"title":"构建混合内核-用户空间虚拟网络功能的体系结构","authors":"N. V. Tu, Kyungchan Ko, J. W. Hong","doi":"10.23919/CNSM.2017.8256051","DOIUrl":null,"url":null,"abstract":"Network Function Virtualization (NFV) is one of the important aspects of modern network architecture. NFV decouples Network Functions (NFs) from hardware, therefore produces Virtual Network Functions (VNFs) that can run on standard, commodity servers, which in turn mostly run Linux kernel. In this paper, we propose a general architecture for building hybrid kernel-user space VNFs which leverages extended Berkeley Packet Filter (eBPF). eBPF is a framework in Linux kernel that enables network programmability inside kernel for optimal performance. However, the programmability of eBPF is limited due to safety and security of the kernel. Our proposed architecture applies hybrid approach: leave the simple work inside the kernel with eBPF and let complex work be processed in the user space. This architecture allows building complex VNFs to have both speed and flexibility. To demonstrate, we use the proposed architecture to build two VNFs: Dynamic Load Balancer and Deep Packet Inspection with Dynamic Sniffing. The evaluation results show that both VNFs significantly outperform the widely used solutions.","PeriodicalId":211611,"journal":{"name":"2017 13th International Conference on Network and Service Management (CNSM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Architecture for building hybrid kernel-user space virtual network functions\",\"authors\":\"N. V. Tu, Kyungchan Ko, J. W. Hong\",\"doi\":\"10.23919/CNSM.2017.8256051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network Function Virtualization (NFV) is one of the important aspects of modern network architecture. NFV decouples Network Functions (NFs) from hardware, therefore produces Virtual Network Functions (VNFs) that can run on standard, commodity servers, which in turn mostly run Linux kernel. In this paper, we propose a general architecture for building hybrid kernel-user space VNFs which leverages extended Berkeley Packet Filter (eBPF). eBPF is a framework in Linux kernel that enables network programmability inside kernel for optimal performance. However, the programmability of eBPF is limited due to safety and security of the kernel. Our proposed architecture applies hybrid approach: leave the simple work inside the kernel with eBPF and let complex work be processed in the user space. This architecture allows building complex VNFs to have both speed and flexibility. To demonstrate, we use the proposed architecture to build two VNFs: Dynamic Load Balancer and Deep Packet Inspection with Dynamic Sniffing. The evaluation results show that both VNFs significantly outperform the widely used solutions.\",\"PeriodicalId\":211611,\"journal\":{\"name\":\"2017 13th International Conference on Network and Service Management (CNSM)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CNSM.2017.8256051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM.2017.8256051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Architecture for building hybrid kernel-user space virtual network functions
Network Function Virtualization (NFV) is one of the important aspects of modern network architecture. NFV decouples Network Functions (NFs) from hardware, therefore produces Virtual Network Functions (VNFs) that can run on standard, commodity servers, which in turn mostly run Linux kernel. In this paper, we propose a general architecture for building hybrid kernel-user space VNFs which leverages extended Berkeley Packet Filter (eBPF). eBPF is a framework in Linux kernel that enables network programmability inside kernel for optimal performance. However, the programmability of eBPF is limited due to safety and security of the kernel. Our proposed architecture applies hybrid approach: leave the simple work inside the kernel with eBPF and let complex work be processed in the user space. This architecture allows building complex VNFs to have both speed and flexibility. To demonstrate, we use the proposed architecture to build two VNFs: Dynamic Load Balancer and Deep Packet Inspection with Dynamic Sniffing. The evaluation results show that both VNFs significantly outperform the widely used solutions.