DeepFake检测算法:一个元分析

Sergey Zotov, R. Dremliuga, A. Borshevnikov, Ksenia Krivosheeva
{"title":"DeepFake检测算法:一个元分析","authors":"Sergey Zotov, R. Dremliuga, A. Borshevnikov, Ksenia Krivosheeva","doi":"10.1145/3421515.3421532","DOIUrl":null,"url":null,"abstract":"We analyzed the developed methods of computer vision in areas associated with recognition and detection of DeepFakes using various models and architectures of neural networks: mainly GAN and CNN. We also discussed the main types and models of these networks that are most effective in detecting and recognizing objects from different data sets, which were provided in the studied articles.","PeriodicalId":294293,"journal":{"name":"2020 2nd Symposium on Signal Processing Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DeepFake Detection Algorithms: A Meta-Analysis\",\"authors\":\"Sergey Zotov, R. Dremliuga, A. Borshevnikov, Ksenia Krivosheeva\",\"doi\":\"10.1145/3421515.3421532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyzed the developed methods of computer vision in areas associated with recognition and detection of DeepFakes using various models and architectures of neural networks: mainly GAN and CNN. We also discussed the main types and models of these networks that are most effective in detecting and recognizing objects from different data sets, which were provided in the studied articles.\",\"PeriodicalId\":294293,\"journal\":{\"name\":\"2020 2nd Symposium on Signal Processing Systems\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Symposium on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3421515.3421532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Symposium on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3421515.3421532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们使用各种神经网络模型和架构(主要是GAN和CNN)分析了与DeepFakes识别和检测相关领域的计算机视觉开发方法。我们还讨论了这些网络的主要类型和模型,这些网络最有效地检测和识别来自不同数据集的目标,这些网络在研究文章中提供了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepFake Detection Algorithms: A Meta-Analysis
We analyzed the developed methods of computer vision in areas associated with recognition and detection of DeepFakes using various models and architectures of neural networks: mainly GAN and CNN. We also discussed the main types and models of these networks that are most effective in detecting and recognizing objects from different data sets, which were provided in the studied articles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信